CountDownLatch 闭锁:可以延迟线程的进度,直到锁到达终止状态。闭锁的作用相当于一扇门,在锁到达终止状态之前这扇门一直是关闭的。当锁到达终止状态时,允许所有线程通 过。CountDownLatch 有一个初始值,通过调用 countDown 可以减少该值,一直到 0 时到达终止状态。

  FutureTask 用于执行一个可返回结果的长任务,任务在单独的线程中执行,其他线程可以用 get 方法取任务结果,如果任务尚未完成,线程在 get 上阻塞。



Semaphore 用于 控制 同时访问某资源 ,或 同时执行某操作的线程数目 。信号量有一个初始值即可以分配的信号量总数目。线程任务开始前先调用 acquire 取得信号量,任务结束后调用 release 释放信号量。在 acquire 是如果没有可用信号量,线程将阻塞在 acquire 上,直到其他线程释放一个信号量。


  CyclicBarrier 栅栏用于多个线程多次迭代时进行同步,在一轮任务中,任何线程完成任务后都在 barrier 上等待,直到所有其他线程也完成任务,然后一起释放,同时进入下一轮迭代。

CountDownLatch 的例子

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicInteger;
public class DemoOfLatch
{
// 利用闭锁 CountDownLatch 控制主线程和子线程的同步
public static void main(String[] args)
{
int numberOfThread = 5;
final CountDownLatch startLatch = new CountDownLatch(1); // 用于控制子线程开始
final CountDownLatch stopLatch = new CountDownLatch(numberOfThread); // 用于子线程计数
final AtomicInteger count = new AtomicInteger(0); // 用于分配子线程唯一标识
System.out.println("Main thread start…");
for (int i = 0; i < numberOfThread; i++)
{
Thread thread = new Thread(new Runnable()
{
@Override
public void run()
{
int tid = count.getAndIncrement();
try
{
// 等代主线程打开启动信号
startLatch.await();
System.out.printf("Thread %d started…%n", tid);
int duration = (int) (Math.random() * 5000);
Thread.sleep(duration);
} catch (InterruptedException e)
{
e.printStackTrace();
Thread.currentThread().interrupt();
} finally
{
System.out.printf("Thread %d stoped…%n", tid);
// 线程终止前减少线程计数
stopLatch.countDown();
}
}
});
thread.start();
}
// 在放行子线程之前做点什么别的事情
System.out
.println("Main thread do preparation work for child threads…");
try
{
Thread.sleep(2000);
} catch (InterruptedException e)
{
e.printStackTrace();
}
// 打开闭锁放行所有子线程
System.out.println("Main thread let child threads go…");
startLatch.countDown();
try
{
// 等待子线程计数降为 0 即所有子线程执行完毕
System.out.println("Main thread wait for all child threads…");
stopLatch.await();
} catch (InterruptedException e)
{
e.printStackTrace();
}
System.out.println("Main thread exit…");
}
}

FutureTask 的例子

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
public class DemoOfFutureTask
{
public static void main(String[] args)
{
// 创建一个 Future Task 用于并发执行长任务
final FutureTask<Movie> future = new FutureTask<Movie>(
new Callable<Movie>()
{
@Override
public Movie call() throws Exception
{
System.out.println("Future task started…");
Thread.sleep(5000);
System.out.println("Future task finished…");
return new Movie("2012", "Unknown");
}
});
// 在子线程中启动任务
Thread thread = new Thread(future);
thread.start();
// 主线程干点别的事情
System.out.println("Now let's do sth eles…");
try
{
Thread.sleep(1000);
} catch (InterruptedException e1)
{
e1.printStackTrace();
}
// 主线程开始取结果
System.out.println("Now wait for result of future task…");
try
{
Movie res = future.get();
System.out.printf("Result from task is name=%s, actor=%s",
res.name, res.actor);
} catch (InterruptedException e)
{
e.printStackTrace();
} catch (ExecutionException e)
{
e.printStackTrace();
}
}
public static class Movie
{
final public String name;
final public String actor;
public Movie(String name, String actor)
{
this.name = name;
this.actor = actor;
}
}
}

Semaphore 的例子:

import java.util.concurrent.Semaphore;
import java.util.concurrent.atomic.AtomicInteger;
public class DemoOfSemaphore
{
/**
* @param args
*/
public static void main(String[] args)
{
final int numOfThread = 5;
final AtomicInteger count = new AtomicInteger(0); // 用于分配唯一线程标识
final Semaphore semaphore = new Semaphore(numOfThread); // 用于控制并发线程数目
for (int i = 0; i < 10; i++)
{
Thread thread = new Thread(new Runnable()
{
@Override
public void run()
{
int tid = count.getAndIncrement();
try
{// 等待直到取得信号量
System.out
.printf("Thread %d wait on semaphore…%n", tid);
semaphore.acquire();
// 取得信号量之后做点事情
System.out.printf("Thread %d get semaphore…%n", tid);
int duration = (int) (Math.random() * 5000);
Thread.sleep(duration);
} catch (InterruptedException e)
{
e.printStackTrace();
} finally
{
// 做完后释放信号量
System.out
.printf("Thread %d release semaphore…%n", tid);
semaphore.release();
}
}
});
thread.start();
}
}
}

CyclicBarrier 的例子:


import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class DemoOfBarrier
{
public static void main(String[] args)
{
final int numOfThread = 2;
final int numOfIteration = 2;
// 创建一个用于线程同步的 Barrier 对象
final CyclicBarrier barrier = new CyclicBarrier(numOfThread,
new Runnable()
{
// 当所有线程到达 Barrier 后会执行这个任务
// 任务在第一个 到达 Barrier 的线程中执行
@Override
public void run()
{
long tid = Thread.currentThread().getId();
// 当所有线程完成一轮迭代之后做点清除/准备/提交工作
System.out.printf(
"[%d] - All threads arrived barrier…%n", tid);
try
{
Thread.sleep(2000);
} catch (InterruptedException e)
{
e.printStackTrace();
}
System.out.printf("[%d] - Clear work done…%n", tid);
}
});
// 创建并启动多个线程,他们在 Barrier 上同步
for (int i = 0; i < numOfThread; i++)
{
Thread thread = new Thread(new Runnable()
{
@Override
public void run()
{
long tid = Thread.currentThread().getId();
for (int k = 0; k < numOfIteration; k++)
{
try
{
// 线程进行一轮迭代,做点事情
System.out.printf("Thread %d start its work…%n",
tid);
long duration = (int) (Math.random() * 5000);
Thread.sleep(duration);
// 做完迭代后等待其他线程完成迭代
System.out.printf("Thread %d wait on barrier…%n",
tid);
int num = barrier.await();
// 显示完成的顺序
System.out.printf(
"Thread %d pass barrier with order=%d…%n",
tid, num);
} catch (InterruptedException e)
{
e.printStackTrace();
Thread.currentThread().interrupt();
} catch (BrokenBarrierException e)
{
e.printStackTrace();
}
}
}
});
thread.start();
}
}
}