CELL_ID
三种主要的基于位置服务(LBS)技术之一。小区识别码通过识别网络中哪一个小区传输用户呼叫并将该信息翻译成纬度和经度来确定用户位置。小区识别码最好应用于低密度的乡村地带,由于缺乏精度因此竞争不过 E-OTD 及 GPS 技术并且不能适用于某些商业用途如基于位置的广告,这种广告需要确定用户精确位置。参见Location Services。
Cell ID实现定位的基本原理:即无线网络上报终端所处的小区号(根据服务的基站来估计),位置业务平台把小区号翻译成经纬度坐标。这种方法实现简单,无需在无线接入网侧增加设备,对网络结构改动小,缺点是定位精度低,在市区一般可以达到300-500m,郊区几公里。小区号将在如下场景下获得: 1、小区路由寻呼 2、定位区域更新 3、小区更新 4、URA更新 5、路由区更新
Cell-ID定位方法的精度取决于以下因素:
1.蜂窝小区半径
2.基站类型,全向/定向(扇区)
3.手机与蜂窝小区中心的距离
DMZ
DMZ 是英文“Demilitarized Zone”的缩写,中文名称为“隔离区”,与军事区和信任区相对应,也称“非军事化区”,是为了解决外部网络不能访问内部网络服务器的问题,而设立的一个非安全系统与安全系统之间的缓冲区。作用是把单位的 FTP服务器、E-Mail服务器等允许外部访问的服务器单独部署在此区域,使整个需要保护的内部网络接在信任区后,不允许任何外部网络的直接访问,实现内外网分离,满足用户的安全需求。
在实际的运用中,某些主机需要对外提供服务,为了更好地提供服务,同时又要有效地保护内部网络的安全,将这些需要对外开放的主机与内部的众多网络设备分隔开来,根据不同的需要,有针对性地采取相应的隔离措施,这样便能在对外提供友好的服务的同时最大限度地保护了内部网络。针对不同资源提供不同安全级别的保护,可以构建一个DMZ区域,DMZ可以为主机环境提供网络级的保护,能减少为不信任客户提供服务而引发的危险,是放置公共信息的最佳位置。在一个非DMZ系统中,内部网络和主机的安全通常并不如人们想象的那样坚固,提供给Internet的服务产生了许多漏洞,使其他主机极易受到攻击。但是,通过配置DMZ,我们可以将需要保护的Web应用程序服务器和数据库系统放在内网中,把没有包含敏感数据、担当代理数据访问职责的主机放置于DMZ中,这样就为应用系统安全提供了保障。DMZ使包含重要数据的内部系统免于直接暴露给外部网络而受到攻击,攻击者即使初步入侵成功,还要面临DMZ设置的新的障碍。
应用:
1.内网可以访问外网
2.内网可以访问DMZ
3.外网不能访问内网
4.外网可以访问DMZ
5.DMZ访问内网有限制
6.DMZ不能访问外网
MAC Address
MAC地址(英语:Media Access Control Address),直译为媒体存取控制位址,也称为局域网地址(LAN Address),MAC位址,以太网地址(Ethernet Address)或物理地址(Physical Address),它是一个用来确认网络设备位置的位址。在OSI模型中,第三层网络层负责IP地址,第二层数据链路层则负责MAC位址 。MAC地址用于在网络中唯一标示一个网卡,一台设备若有一或多个网卡,则每个网卡都需要并会有一个唯一的MAC地址
MAC地址的长度为48位(6个字节),通常表示为12个16进制数,如:00-16-EA-AE-3C-40就是一个MAC地址,其中前6位16进制数00-16-EA代表网络硬件制造商的编号,它由IEEE(电气与电子工程师协会)分配,而后6位16进制数AE-3C-40代表该制造商所制造的某个网络产品(如网卡)的系列号。只要不更改自己的MAC地址,MAC地址在世界是惟一的。形象地说,MAC地址就如同身份证上的身份证号码,具有唯一性 。
在命令提示符下输入命令“ipconfig /all”回车之后就会显示当前计算机的一些网络信息,其中“Physical Address”字样的这一项就是当前计算机中网卡的 MAC地址。当然,如果计算机中安装有多个网卡,则会有多个“Physical Address”字样。
NATP
NAPT(Network Address Port Translation)即网络端口地址转换,就是将多个内部地址映射为一个合法公网地址,但以不同的协议端口号与不同的内部地址相对应。也就是<内部地址+内部端口>与<外部地址+外部端口>之间的转换,内部端口与外部端口不一定相同,由端口映射规则决定。NAPT普遍用于接入设备中,它可以将中小型的网络隐藏在一个合法的IP地址后面。
NAPT使得一组主机可以共享唯一的外部地址,当位于内部网络中的主机通过NAT设备向外部主机发起会话请求时,NAT设备就会查询NAT表,看是否有相关会话记录,如果有相关记录,就会将内部IP地址及端口同时进行转换,再转发出去;如果没有相关记录,进行IP地址和端口转换的同时,还会在NAT表增加一条该会话的记录。外部主机接收到数据包后,用接受到的合法公网地址及端口作为目的IP地址及端口来响应,NAT设备接收到外部回来的数据包,再根据NAT表中的记录把目的地址及端口转换成对应的内网IP地址及端口,转发给该内部主机。
IMEI
国际移动设备识别码(International Mobile Equipment Identity,IMEI),即通常所说的手机序列号、手机“串号”,用于在移动电话网络中识别每一部独立的手机等移动通信设备,相当于移动电话的身份证。序列号共有15~17位数字,前8位(TAC)是型号核准号码(早期为6位),是区分手机品牌和型号的编码。接着2位(FAC)是最后装配号(仅在早期机型中存在),代表最终装配地代码。后6位(SNR)是串号,代表生产顺序号。国际移动设备识别码一般贴于机身背面与外包装上,同时也存在于手机存储器中,通过在手机拨号键盘中输入*#06#即可查询。
第一部分:TAC,Type Allocation Code,类型分配码,由8位数字组成(早期是6位),是区分手机品牌和型号的编码,该代码由GSMA及其授权机构分配。其中TAC码前两位又是分配机构标识(Reporting Body Identifier),是授权IMEI码分配机构的代码,如01为美国CTIA,35为英国BABT,86为中国TAF。
第二部分:FAC,Final Assembly Code,最终装配地代码,由2位数字构成,仅在早期TAC码为6位的手机中存在,所以TAC和FAC码合计一共8位数字。FAC码用于生产商内部区分生产地代码。
第三部分:SNR,Serial Number,序列号,由第9位开始的6位数字组成,区分每部手机的生产序列号。
第四部分:CD,Check Digit,验证码,由前14位数字通过Luhn算法计算得出。
第五部分:SVN,Software Version Number,软件版本号,区分同型号手机出厂时使用的不同软件版本,仅在部分品牌的部分机型中存在。
IMSI
国际移动用户识别码(英语:IMSI,International Mobile Subscriber Identity),是用于区分蜂窝网络中不同用户的、在所有蜂窝网络中不重复的识别码。手机将IMSI存储于一个64比特的字段发送给网络。IMSI可以用来在归属位置寄存器(HLR,Home Location Register)或拜访位置寄存器(VLR,Visitor Location Register)中查询用户的信息。为了避免被监听者识别并追踪特定的用户,大部分情形下手机和网络之间的通信会使用随机产生的临时移动用户识别码(TMSI,Temporary Mobile Subscriber Identity)代替IMSI。
只要一个移动网络的用户需要与其他移动网络互通,就必须使用IMSI。在GSM、UMTS和LTE网络中,IMSI来自SIM卡,在CDMA2000网络中则是直接来自手机,或者RUIM。
IMSI由一串十进制数字组成,最大长度为15位。实际使用的IMSI的长度绝大部分都是15位,短于15位的例子少见,例如,南非MTN有一些仍在网络中使用的较旧的IMSI为14位数字。IMSI由移动国家代码(MCC,Mobile Country Code)、移动网络代码(MNC,Mobile Network Code)和移动订户识别代码(MSIN,Mobile subscription identification number)依次连接而成。MCC长度为3位,MNC长度由MCC的值决定,可以是2位(欧洲标准)或3位数字(北美标准),MSIN的值由运营商自行分配。
IMSI的格式由国际电信联盟(ITU)的E.212标准定义。
IMSI:310150123456789 | | IMSI:460001357924680 | ||||
MCC | 310 | 美国 | MCC | 460 | 中华人民共和国 | |
MNC | 150 | 美国电话电报公司(AT&T Mobility) | MNC | 00 | 中国移动 | |
MSIN | 123456789 | MSIN | 1357924680 |
PLMN
公共陆地移动网(Public Land Mobile Network,简称:PLMN),由政府或它所批准的经营者,为公众提供陆地移动通信业务目的而建立和经营的网络。该网路通常与公众交换电话网(PSTN)互连,形成整个地区或国家规模的通信网。PLMN = MCC + MNC
公众陆地移动网(PLMN)是一个无线通讯系统,趋向于面向陆地上的例如交通工具或步行中的移动用户。这样的系统可以是独立的,但常常和固定电话系统如公用交换电话网络(PSTN)连接起来。然而,移动和便携的因特网用户也越来越普及。一个理想的PLMN系统提供给移动和便携用户和固定网络相当的服务,这在地形比较复杂的区域是一个特殊的挑战,因为基站会难以被找到和维持。在都市的环境中有很多的障碍,像是建筑物,和各种射频都能引起杂音和干扰的辐射。大多数的系统今天使用数字技术而不是过去的模拟技术。这一个过渡已经改善了通信质量和可靠度,但是还没有达到完美的地步。
不同类型的PLMN其优先级别不同,终端在进行PLMN选择时将按照以下顺序依次进行:
⑴ RPLMN
⑵ EPLMN/EHPLMN
⑶ HPLMN
⑷ UPLMN
⑸ OPLMN
⑹ VPLMN
⑺ 其他的PLMN
RSRP
RSRP (Reference Signal Receiving Power,参考信号接收功率) 是LTE网络中可以代表无线信号强度的关键参数以及物理层测量需求之一,是在某个符号内承载参考信号的所有RE(资源粒子)上接收到的信号功率的平均值。用处和规范都等同于WCDMA中的RSCP(Received Signal Code Power)接收信号码功率,单位是: dBm
RSRQ
RSRQ(Reference Signal Receiving Quality)表示LTE参考信号接收质量,这种度量主要是根据信号质量来对不同LTE候选小区进行排序。这种测量用作切换和小区重选决定的输入。
RSRQ被定义为N*RSRP/(LTE载波RSSI)之比,其中N是LTE载波RSSI测量带宽的资源块(RB)个数。RSRQ实现了一种有效的方式报告信号强度和干扰相结合的效果。
取值范围:-3~-19.5 ,值越大信号越好。
RSSI
RSSI是 Received Signal Strength Indication 的简称接收的信号强度指示,无线发送层的可选部分,用来判定链接质量,以及是否增大广播发送强度。主要应用于发射机和接收机之间的距离测量。该方法是依据接收信号能量强度确定距离,对通信信道参数要求较高。其测距理论是:依据无线电波或声波在介质中传输,信号功率是随传播距离衰减的原理。根据信标节点已知信号的发射功率和节点接收的信号功率,通过信号与距离之间的衰减模型,就可以计算出节点间的距离。由于信号传播的过程中,受到距离和障碍物的影响。信号的功率强度随之衰减,间接影响精度。所以要求得到良好的精度,短距离才会体现这一点。
由于信号发射设备和接收设备简单、成本低、低功耗,比较适合无线传感器网络定位机制。针对室内和室外环境,现阶段流行的估计位置技术中,对提高估计位置的准确性方面,也有很多方法。例如由三个非共线锚定器组成,通过非共线信标节点进行位置估计的最小二乘法,以及使用三个以上的信标节点多点定位技术。
在空载下看RSSI的平均值是判断干扰的最主要手段。对于新开局,用户很少,空载下的RSSI电平一般小于-105dBm。在业务存在的情况下,有多个业务时RSSI平均值一般不会超过-95dBm。从接收质量FER上也可以参考判断是否有干扰存在。通过以发现是否存在越区覆盖而造成干扰,也可以从 Ec/Io与手机接收功率来判断是否有干扰。对于外界干扰,通过频谱仪分析进一步查出是否存在干扰源。
SINR
SINR:(Signal to Interference plus Noise Ratio)信号与干扰加噪声比,是指接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以简单的理解为“信噪比”。
目前协议没有对SINR的具体定义,通常表达方式如下:
SINR=Signal / (Interference+Noise);
S:测量到的有用信号的功率,主要关注的信号和信道包括:RS、PDSCH;
I:测量到的信号或信道干扰信号的功率,包括本系统其他小区的干扰,以及异系统的干扰:
N:低噪,与具体测量带宽和接收机噪声系数有关。
SINR 边缘经验取值:
TD-LTE局点,99%区域,SINR>-3dB
外场,99.25%区域,SINR>-3dB
SIP ALG
会话发起协议SIP(Session Initiation Protocol)是由IETF组织于1999年提出的在Internet网络环境中实现实时通信应用的一种信令协议。SIP引发了现代通信体系结构的变革,然而它却在视频能力、会议控制方面没有一个完善的标准;同时,由于大量企业和驻地网都采用了私有编址,并通过网络地址转换NAT(Network Address Translation)来控制与公共网络的通信,而SIP数据包需通过信令消息中的IP地址和端口号来实现目的地寻址,且它的媒体流端口是动态分配的,这就为在NAT上配置固定的包过滤策略带来了困难。因此,SIP穿透NAT是绝大多数VoIP运营商亟待解决的问题。
当前几种主要的NAT穿透技术有SIP ALG、Full Proxy、MidCom、×××、隧道穿透、STUN等。其中,SIP ALG方式是在传统的NAT上进行扩展,使之具备感知SIP呼叫控制协议的能力,从而对基于SIP呼叫的地址实现穿透。它是一种比较简单的方案,最突出的特点是ALG和具体的SIP系统无关,对于一个SIP系统不需要做任何修改,只要在响应的NAT上加载SIP ALG,就能完成私网到公网甚至私网中的两个用户之间的SIP连接。
SIP ALG的设计思想:由于媒体流端口是在呼叫双方SIP信令建立连接后动态协商的,因此对SIP消息穿透NAT设备要综合考虑这两个方面因素。
SIP信令的穿透原理:SIP信令穿透NAT与HTTP穿透类似,NAT设备只要打开固定的端口,就能保证SIP信令穿透NAT并与外界建立连接
UPNP
通用即插即用(英语:Universal Plug and Play,简称UPnP)是由“通用即插即用论坛”(UPnP™ Forum)推广的一套网络协议。该协议的目标是使家庭网络(数据共享、通信和娱乐)和公司网络中的各种设备能够相互无缝连接,并简化相关网络的实现。UPnP通过定义和发布基于开放、因特网通讯网协议标准的UPnP设备控制协议来实现这一目标。
UPnP体系允许PC间的点对点连接、网际互连和无线设备。它是一种基于TCP/IP、UDP和HTTP的分布式、开放体系。
UPnP使得任意两个设备能在LAN控制设备的管理下相互通信。其特性包括:
1、传输介质和设备独立。UPnP技术可以应用在许多媒体上,包括电话线、电线(电力线通信PLC)、以太网、红外通信技术(IrDA)、无线电(Wi-Fi,蓝牙)和Firewire(1394)。无需任务设备驱动;而是采用共同的协议。
2、用户界面(UI)控制。UPnP技术使得设备厂商可以通过网页浏览器来控制设备并进行交互。
3、操作系统和程序语言独立。任何操作系统和程序语言均可以用于构建UPnP产品。UPnP并没有设定或限制运行于控制设备上的应用程序API;OS厂商可以创建满足他们客户需求的API。UPnP使得厂商可以像开发常规应用程序一样来控制设备UI和交互。
4、基于因特网技术。UPnP构建于IP、TCP、UDP、HTTP,和XML等许多协议之上。
5、编程控制。UPnP体系同时支持常规应用程序编程控制。
6、扩展性。每个UPnP设备都可以有构建于基本体系之上、与具体设备相关的服务。
WEP
WEP是一种老式的加密方式,在2003年时就被WPA加密所淘汰,由于其安全性能存在好几个弱点,很容易被专业人士攻破,不过,对于非专业人来说还是比较安全的。其次由于WEP采用的是IEEE 802.11技术,而现在无线路由设备基本都是使用的IEEE 802.11n技术,因此,当使用WEP加密时会影响无线网络设备的传输速率,如果是以前的老式设备只支持IEEE 802.11的话,那么无论使用哪种加密都可以兼容,对无线传输速率没有什么影响。
WPA/WPA2
WPA/WPA2是一种最安全的加密类型,不过由于此加密类型需要安装Radius服务器,因此,一般普通用户都用不到,只有企业用户为了无线加密更安全才会使用此种加密方式,在设备连接无线WIFI时需要Radius服务器认证,而且还需要输入Radius密码。
WPA-PSK/WPA2-PSK
WPA-PSK/WPA2-PSK是我们现在经常设置的加密类型,这种加密类型安全性能高,而且设置也相当简单,不过需要注意的是它有AES和TKIP两种加密算法。
TKIP:Temporal Key Integrity Protocol(临时密钥完整性协议),这是一种旧的加密标准。
AES:Advanced Encryption Standard(高级加密标准),安全性比 TKIP 好,推荐使用。使用AES加密算法不仅安全性能更高,而且由于其采用的是最新技术,因此,在无线网络传输速率上面也要比TKIP更快。
WPS
WPS是由Wi-Fi联盟所推出的全新Wi-Fi安全防护设定(Wi-Fi Protected Setup)标准,该标准推出的主要原因是为了解决长久以来无线网络加密认证设定的步骤过于繁杂艰难之弊病,使用者往往会因为步骤太过麻烦,以致干脆不做任何加密安全设定,因而引发许多安全上的问题。WPS用于简化Wi-Fi无线的安全设置和网络管理。它支持两种模式:个人识别码(PIN)模式和按钮(PBC)模式。
PBC 英文全称 Push ButtonConfiguration 它可以是设备上的硬件按钮或软件模拟的按钮(对于无线客户端为可选配置)。
WPS设置,即Wi-Fi保护设置,您可以根据客户端的支持,选择合适的模式。通过WPS,AP和客户端可以自动的进行安全设置,您只需简单的按下按钮或输入PIN就可以了。在有些客户端或路由器上,WPS也称为WSC(Wi-Fi简单设置)。