Elasticsearch 入门教程
本文根据 指南,基于docker
容器快速搭建 Elasticsearch
环境,并结 Elasticsearch
快速入门进行总结。
安装
官网安装教程地址:
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
基本概念
1. Node 与 Cluster
Elastic
本质上是一个分布式数据库,允许多台服务器协同工作,每台服务器可以运行多个 Elastic
实例,单个 Elastic
实例称为一个节点(node
),一组节点构成一个集群(cluster
)。
2. Index
Elastic
会索引所有字段,经过处理后写入一个反向索引(Inverted Index
)。查找数据的时候,直接查找该索引。
所以,Elastic
数据管理的顶层单位就叫做 Index
(索引)。它是单个数据库的同义词。每个 Index
(即数据库)的名字必须是小写。
下面的命令可以查看当前节点的所有 Index
。
$ curl -X GET 'http://localhost:9200/_cat/indices?v'
3. 添加单个数据
POST logs-my_app-default/_doc
{
"@timestamp": "2099-05-06T16:21:15.000Z",
"event": {
"original": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736"
}
}
结果:
{
"_index": ".ds-logs-my_app-default-2099-05-06-000001",
"_type": "_doc",
"_id": "gl5MJXMBMk1dGnErnBW8",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1
}
4. 添加多个数据
PUT logs-my_app-default/_bulk
{ "create": { } }
{ "@timestamp": "2099-05-07T16:24:32.000Z", "event": { "original": "192.0.2.242 - - [07/May/2020:16:24:32 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0" } }
{ "create": { } }
{ "@timestamp": "2099-05-08T16:25:42.000Z", "event": { "original": "192.0.2.255 - - [08/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638" } }
5. 搜索数据
查询所有匹配数据:logs-my_app-default
,并以@timestamp
降序显示
GET logs-my_app-default/_search
{
"query": {
"match_all": { }
},
"sort": [
{
"@timestamp": "desc"
}
]
}
结果:
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 3,
"relation": "eq"
},
"max_score": null,
"hits": [
{
"_index": ".ds-logs-my_app-default-2099-05-06-000001",
"_type": "_doc",
"_id": "PdjWongB9KPnaVm2IyaL",
"_score": null,
"_source": {
"@timestamp": "2099-05-08T16:25:42.000Z",
"event": {
"original": "192.0.2.255 - - [08/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638"
}
},
"sort": [
4081940742000
]
},
...
]
}
}
6. 解析固定字段,去除一些字段:
GET logs-my_app-default/_search
{
"query": {
"match_all": { }
},
"fields": [
"@timestamp"
],
"_source": false,
"sort": [
{
"@timestamp": "desc"
}
]
}
结果:
{
...
"hits": {
...
"hits": [
{
"_index": ".ds-logs-my_app-default-2099-05-06-000001",
"_type": "_doc",
"_id": "PdjWongB9KPnaVm2IyaL",
"_score": null,
"fields": {
"@timestamp": [
"2099-05-08T16:25:42.000Z"
]
},
"sort": [
4081940742000
]
},
...
]
}
}
"fields"
挑选字段解析,'_source':false,
该字段不再显示
7. 范围搜索 range
GET logs-my_app-default/_search
{
"query": {
"range": {
"@timestamp": {
"gte": "2099-05-05",
"lt": "2099-05-08"
}
}
},
"fields": [
"@timestamp"
],
"_source": false,
"sort": [
{
"@timestamp": "desc"
}
]
}
查询过去一天的数据
GET logs-my_app-default/_search
{
"query": {
"range": {
"@timestamp": {
"gte": "now-1d/d",
"lt": "now/d"
}
}
},
"fields": [
"@timestamp"
],
"_source": false,
"sort": [
{
"@timestamp": "desc"
}
]
}
8. 新建 索引 Index
PUT my_index
{
"mappings":
{
"properties":
{
"address":
{
"type": "ip"
},
"port":
{
"type": "long"
}
}
}
}
结果:
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_index"
}
9. 将一些文档加载到其中:
POST my_index/_bulk
{"index":{"_id":"1"}}
{"address":"1.2.3.4","port":"80"}
{"index":{"_id":"2"}}
{"address":"1.2.3.4","port":"8080"}
{"index":{"_id":"3"}}
{"address":"2.4.8.16","port":"80"}
返回结果:
{
"took" : 8,
"errors" : false,
"items" : [
{
"index" : {
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 1,
"status" : 201
}
},
{
"index" : {
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 1,
"_primary_term" : 1,
"status" : 201
}
},
{
"index" : {
"_index" : "my_index",
"_type" : "_doc",
"_id" : "3",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 2,
"_primary_term" : 1,
"status" : 201
}
}
]
}
10. 使用静态字符串创建两个
GET my_index/_search
{
"runtime_mappings": {
"socket": {
"type": "keyword",
"script": {
"source": "emit(doc['address'].value + ':' + doc['port'].value)"
}
}
},
"fields": [
"socket"
],
"query": {
"match": {
"socket": "1.2.3.4:8080"
}
}
}
返回结果:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"address" : "1.2.3.4",
"port" : "8080"
},
"fields" : {
"socket" : [
"1.2.3.4:8080"
]
}
}
]
}
}
上面代码中,返回结果的 took
字段表示该操作的耗时(单位为毫秒),timed_out
字段表示是否超时,hits
字段表示命中的记录,里面子字段的含义如下:
-
total
:返回记录数,本例是2条。 -
max_score
:最高的匹配程度,本例是1.0。 -
hits
:返回的记录组成的数组。
返回的数据中,found
字段表示查询成功,_source
字段返回原始记录。
我们在 runtime_mappings
部分中定义了字段 socket
。 我们使用了一个简短的 painless script
,该脚本定义了每个文档将如何计算 socket
的值(使用 + 表示 address
字段的值与静态字符串 “:” 和 port
字段的值的串联)。 然后,我们在查询中使用了字段 socket
。 字段 socket
是一个临时运行时字段,仅对于该查询存在,并且在运行查询时进行计算。 在定义要与 runtime fields
一起使用的 painless script
时,必须包括 emit
以返回计算出的值。
socket
:运行时加入的字段。source
, id
官方文档:
The script itself, which you specify as source for an inline script or id for a stored script. Use the stored script APIs to create and manage stored scripts.
"source": "emit(doc['address'].value + ':' + doc['port'].value)" 为内嵌脚本
11. 如果我们发现 socket
是一个我们想在多个查询中使用的字段,而不必为每个查询定义它,则可以通过调用简单地将其添加到映射中:
PUT my_index/_mapping
{
"runtime": {
"socket": {
"type": "keyword",
"script": {
"source": "emit(doc['address'].value + ':' + doc['port'].value)"
}
}
}
}
结果:
{
"acknowledged" : true
}
此时在Index mapping
文件里已经存在socket
字段,然后查询,不必在运行时定义包含 socket
字段,例如
GET my_index/_search
{
"fields": [
"socket"
],
"query": {
"match": {
"socket": "1.2.3.4:8080"
}
}
}
结果(和使用静态字符串创建两个结果一样):
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"address" : "1.2.3.4",
"port" : "8080"
},
"fields" : {
"socket" : [
"1.2.3.4:8080"
]
}
}
]
}
}
仅在要显示 socket
字段的值时才需要语句 "fields": ["socket"]
。 现在,字段查询可用于任何查询,但它不存在于索引中,并且不会增加索引的大小。 仅在查询需要 socket
以及需要它的文档时才计算 socket
。
12. runtime
和 runtime_mapping
区别:
使用runtime
时定义的字段会存储到Index
映射中,而runtime_mapping
定义的字段只存在运行查询中。
映射字段:https://www.elastic.co/guide/en/elasticsearch/reference/7.11/runtime-mapping-fields.html#runtime-mapping-fields
请求字段: https://www.elastic.co/guide/en/elasticsearch/reference/7.11/runtime-search-request.html#runtime-search-request
13. 在查询时覆盖字段值
PUT my_raw_index
{
"mappings": {
"properties": {
"raw_message": {
"type": "keyword"
},
"address": {
"type": "ip"
}
}
}
}
结果:
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_raw_index"
}