一、官方项目介绍

1.1 描述:

KOOM是快手性能优化团队在处理移动端OOM问题的过程中沉淀出的一套完整解决方案。其中Android Java内存部分在LeakCanary的基础上进行了大量优化,解决了线上内存监控的性能问题,在不影响用户体验的前提下线上采集内存镜像并解析。从 2020 年春节后在快手主APP上线至今解决了大量OOM问题,其性能和稳定性经受住了海量用户与设备的考验,因此决定开源以回馈社区。

1.2 特点:

  • 比leakCanary更丰富的泄漏场景检测;
  • 比leakCanary更好的检测性能;
  • 功能全面的支持线上大规模部署的闭环监控系统;

1.3 KOOM框架

【开源库剖析】KOOM V1.0.5 源码解析_koom

1.4 快手KOOM核心流程包括:

  • 配置下发决策;
  • 监控内存状态;
  • 采集内存镜像;
  • 解析镜像文件(以下简称hprof)生成报告并上传;
  • 问题聚合报警与分配跟进。

1.5 泄漏检测触发机制优化:

泄漏检测触发机制leakCanary做法是GC过后对象WeakReference一直不被加入 ReferenceQueue,它可能存在内存泄漏。这个过程会主动触发GC做确认,可能会造成用户可感知的卡顿,而KOOM采用内存阈值监控来触发镜像采集,将对象是否泄漏的判断延迟到了解析时,阈值监控只要在子线程定期获取关注的几个内存指标即可,性能损耗很低。

【开源库剖析】KOOM V1.0.5 源码解析_Android_02

1.6 heap dump优化:

传统方案会冻结应用几秒,KOOM会fork新进程来执行dump操作,对父进程的正常执行没有影响。暂停虚拟机需要调用虚拟机的art::Dbg::SuspendVM函数,谷歌从Android 7.0开始对调用系统库做了限制,快手自研了kwai-linker组件,通过caller address替换和dl_iterate_phdr解析绕过了这一限制。

【开源库剖析】KOOM V1.0.5 源码解析_安卓_03

随机采集线上真实用户的内存镜像,普通dump和fork子进程dump阻塞用户使用的耗时如下:

【开源库剖析】KOOM V1.0.5 源码解析_安卓_04

而从官方给出的测试数据来看,效果似乎是非常好的。

二、官方demo演示

这里就直接跑下官方提供的koom-demo

点击按钮,经过dump heap -> heap analysis -> report cache/koom/report/三个流程(heap analysis时间会比较长,但是完全不影响应用的正常操作),最终在应用的cache/koom/report里生成json报告:


cepheus:/data/data/com.kwai.koom.demo/cache/koom/report # ls
2020-12-08_15-23-32.json


模拟一个最简单的单例CommonUtils持有LeakActivity实例的内存泄漏,看下json最终上报的内容是个啥:


{
"analysisDone":true,
"classInfos":[
{
"className":"android.app.Activity",
"instanceCount":4,
"leakInstanceCount":3
},
{
"className":"android.app.Fragment",
"instanceCount":4,
"leakInstanceCount":3
},
{
"className":"android.graphics.Bitmap",
"instanceCount":115,
"leakInstanceCount":0
},
{
"className":"libcore.util.NativeAllocationRegistry",
"instanceCount":1513,
"leakInstanceCount":0
},
{
"className":"android.view.Window",
"instanceCount":4,
"leakInstanceCount":0
}
],
"gcPaths":[
{
"gcRoot":"Local variable in native code",
"instanceCount":1,
"leakReason":"Activity Leak",
"path":[
{
"declaredClass":"java.lang.Thread",
"reference":"android.os.HandlerThread.contextClassLoader",
"referenceType":"INSTANCE_FIELD"
},
{
"declaredClass":"java.lang.ClassLoader",
"reference":"dalvik.system.PathClassLoader.runtimeInternalObjects",
"referenceType":"INSTANCE_FIELD"
},
{
"declaredClass":"",
"reference":"java.lang.Object[]",
"referenceType":"ARRAY_ENTRY"
},
{
"declaredClass":"com.kwai.koom.demo.CommonUtils",
"reference":"com.kwai.koom.demo.CommonUtils.context",
"referenceType":"STATIC_FIELD"
},
{
"reference":"com.kwai.koom.demo.LeakActivity",
"referenceType":"instance"
}
],
"signature":"378fc01daea06b6bb679bd61725affd163d026a8"
}
],
"runningInfo":{
"analysisReason":"RIGHT_NOW",
"appVersion":"1.0",
"buildModel":"MI 9 Transparent Edition",
"currentPage":"LeakActivity",
"dumpReason":"MANUAL_TRIGGER",
"jvmMax":512,
"jvmUsed":2,
"koomVersion":1,
"manufacture":"Xiaomi",
"nowTime":"2020-12-08_16-07-34",
"pss":32,
"rss":123,
"sdkInt":29,
"threadCount":17,
"usageSeconds":40,
"vss":5674
}
}


这里主要分三个部分:类信息、gc引用路径、运行基本信息。这里从gcPaths中能看出LeakActivity被CommonUtils持有了引用。

框架使用这里参考官方接入文档即可,这里不赘述: ​​github.com/KwaiAppTeam…​

三、框架解析

3.1 类图

【开源库剖析】KOOM V1.0.5 源码解析_java_05

3.2 时序图

KOOM初始化流程

【开源库剖析】KOOM V1.0.5 源码解析_Android_06

KOOM执行初始化方法,10秒延迟之后会在threadHandler子线程中先通过check状态判断是否开始工作,工作内容是先检查是不是有未完成分析的文件,如果有就就触发解析,没有则监控内存。

heap dump流程

【开源库剖析】KOOM V1.0.5 源码解析_koom_07

HeapDumpTrigger

  • startTrack:监控自动触发dump hprof操作。开启内存监控,子线程5s触发一次检测,看当前是否满足触发heap dump的条件。条件是由一系列阀值组织,这部分后面详细分析。满足阀值后会通过监听回调给HeapDumpTrigger去执行trigger。
  • trigger:主动触发dump hprof操作。这里是fork子进程来处理的,这部分也到后面详细分析。dump完成之后通过监听回调触发HeapAnalysisTrigger.startTrack触发heap分析流程。

heap analysis流程

【开源库剖析】KOOM V1.0.5 源码解析_java_08

HeapAnalysisTrigger

  • startTrack 根据策略触发hprof文件分析。
  • trigger 直接触发hprof文件分析。由单独起进程的service来处理,工作内容主要分内存泄漏检测(activity/fragment/bitmap/window)和泄漏数据整理缓存为json文件以供上报。

四、核心源码解析

经过前面的分析,基本上对框架的使用和结构有了一个宏观了解,这部分就打算对一些实现细节进行简单分析。

4.1 内存监控触发dump规则

这里主要是研究HeapMonitor中isTrigger规则,每隔5S都会循环判断该触发条件。


com/kwai/koom/javaoom/monitor/HeapMonitor.java
@Override
public boolean isTrigger() {
if (!started) {
return false;
}
HeapStatus heapStatus = currentHeapStatus();
if (heapStatus.isOverThreshold) {
if (heapThreshold.ascending()) {
if (lastHeapStatus == null || heapStatus.used >= lastHeapStatus.used) {
currentTimes++;
} else {
currentTimes = 0;
}
} else {
currentTimes++;
}
} else {
currentTimes = 0;
}
lastHeapStatus = heapStatus;
return currentTimes >= heapThreshold.overTimes();
}
private HeapStatus lastHeapStatus;
private HeapStatus currentHeapStatus() {
HeapStatus heapStatus = new HeapStatus();
heapStatus.max = Runtime.getRuntime().maxMemory();
heapStatus.used = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
heapStatus.isOverThreshold = 100.0f * heapStatus.used / heapStatus.max > heapThreshold.value();
return heapStatus;
}

com/kwai/koom/javaoom/common/KConstants.java

public static class HeapThreshold {
public static int VM_512_DEVICE = 510;
public static int VM_256_DEVICE = 250;
public static int VM_128_DEVICE = 128;
public static float PERCENT_RATIO_IN_512_DEVICE = 80;
public static float PERCENT_RATIO_IN_256_DEVICE = 85;
public static float PERCENT_RATIO_IN_128_DEVICE = 90;

public static float getDefaultPercentRation() {
int maxMem = (int) (Runtime.getRuntime().maxMemory() / MB);
if (maxMem >= VM_512_DEVICE) {
return KConstants.HeapThreshold.PERCENT_RATIO_IN_512_DEVICE;
} else if (maxMem >= VM_256_DEVICE) {
return KConstants.HeapThreshold.PERCENT_RATIO_IN_256_DEVICE;
} else if (maxMem >= VM_128_DEVICE) {
return KConstants.HeapThreshold.PERCENT_RATIO_IN_128_DEVICE;
}
return KConstants.HeapThreshold.PERCENT_RATIO_IN_512_DEVICE;
}

public static int OVER_TIMES = 3;
public static int POLL_INTERVAL = 5000;
}


这里就是针对不同内存大小做了不同的阀值比例:

  • 应用内存>512M 80%
  • 应用内存>256M 85%
  • 应用内存>128M 90%
  • 低于128M的默认按80%

应用已使用内存/最大内存超过该比例则会触发heapStatus.isOverThreshold。连续满足3次触发heap dump,但是这个过程会考虑内存增长性,3次范围内出现了使用内存下降或者使用内存/最大内存低于对应阀值了则清零。

因此规则总结为:3次满足>阀值条件且内存一直处于上升期才触发。这样能减少无效的dump。

4.2 fork进程执行dump操作实现

这里先对比下目前市面上三方框架的主流实现方案:

【开源库剖析】KOOM V1.0.5 源码解析_安卓_09

LeakCanaray、Matrix、Probe采用的方案:

直接执行Debug.dumpHprofData(),它执行过程会先挂起当前进程的所有线程,然后执行dump操作,生成完成hprof文件之后再唤醒所有线程。整个过程非常耗时,会带来比较明显的卡顿,因此这个痛点严重影响该功能带到线上环境。

KOOM采用的方案:

主进程fork子进程来处理hprof dump操作,主进程本身只有在fork 子进程过程会短暂的suspend VM, 之后耗时阻塞均发生在子进程内,对主进程完全不产生影响。suspend VM本身过程时间非常短,从测试结果来看完全可以忽略不计

接下来详细分析下fork dump方案的实现: 目前项目中默认使用ForkJvmHeapDumper来执行dump。


com/kwai/koom/javaoom/dump/ForkJvmHeapDumper.java
@Override
public boolean dump(String path) {
boolean dumpRes = false;
try {
int pid = trySuspendVMThenFork();//暂停虚拟机,copy-on-write fork子进程
if (pid == 0) {//子进程中
Debug.dumpHprofData(path);//dump hprof
exitProcess();//_exit(0) 退出进程
} else {//父进程中
resumeVM();//resume当前虚拟机
dumpRes = waitDumping(pid);//waitpid异步等待pid进程结束
}
} catch (Exception e) {
e.printStackTrace();
}
return dumpRes;
}


为什么需要先suspendVM然后再fork?

起初我理解主要是让fork前后的内存镜像保存一致性,但是对于内存泄漏来说这个造成的影响并不大,demo直接fork好像也没有什么问题,何况这块做了大量工作绕过Android N的限制去suspendVM肯定是有其必要性的。

最终才发现,单线程是没问题的,因为线程已经停了,demo加多线程dump会卡在suspendVM。因此需要先suspendVM,再fork,最后resumeVM。

好,确认工作流之后,来尝试实现:

native层:

这里fork、waitPid 、exitProcess都比较简单,直接忽略,重点看vm相关操作:

正常操作就应该是:


void *libHandle = dlopen("libart.so", RTLD_NOW);//打开libart.so, 拿到文件操作句柄
void *suspendVM = dlsym(libHandle, LIBART_DBG_SUSPEND);//获取suspendVM方法引用
void *resumeVM = dlsym(libHandle, LIBART_DBG_RESUME);//获取resumeVM方法引用
dlclose(libHandle);//关闭libart.so文件操作句柄


这在Android N以下的版本这么操作是OK了,但是谷歌从Android 7.0开始对调用系统库做了限制,基于此前提,快手自研了kwai-linker组件,通过caller address替换和dl_iterate_phdr解析绕过了这一限制,​​官方文档对限制说明​​,那么接下来就分析下KOOM是如何绕过此限制的。

源码参考:Android 9.0


/bionic/libdl/libdl.cpp
02__attribute__((__weak__))
103void* dlopen(const char* filename, int flag) {
104 const void* caller_addr = __builtin_return_address(0);//得到当前函数返回地址
105 return __loader_dlopen(filename, flag, caller_addr);
106}

/bionic/linker/dlfcn.cpp
152void* __loader_dlopen(const char* filename, int flags, const void* caller_addr) {
153 return dlopen_ext(filename, flags, nullptr, caller_addr);
154}

131static void* dlopen_ext(const char* filename,
132 int flags,
133 const android_dlextinfo* extinfo,
134 const void* caller_addr) {
135 ScopedPthreadMutexLocker locker(&g_dl_mutex);
136 g_linker_logger.ResetState();
137 void* result = do_dlopen(filename, flags, extinfo, caller_addr);//执行do_dlopen
138 if (result == nullptr) {
139 __bionic_format_dlerror("dlopen failed", linker_get_error_buffer());
140 return nullptr;
141 }
142 return result;
143}

/bionic/linker/linker.cpp
2049void* do_dlopen(const char* name, int flags,
2050 const android_dlextinfo* extinfo,
2051 const void* caller_addr) {
2052 std::string trace_prefix = std::string("dlopen: ") + (name == nullptr ? "(nullptr)" : name);
2053 ScopedTrace trace(trace_prefix.c_str());
2054 ScopedTrace loading_trace((trace_prefix + " - loading and linking").c_str());
2055 soinfo* const caller = find_containing_library(caller_addr);
2056 android_namespace_t* ns = get_caller_namespace(caller);
...
2141 return nullptr;
2142}


这里dlopen最终执行是通过__loader_dlopen,只不过默认会传入当前函数地址,这个地址其实就是做了caller address校验,如果检测出是三方地址则校验不通过,这里传入系统函数地址则能通过校验,例如dlerror。

那么KOOM的做法是:

大于N小于Q的Android版本


using __loader_dlopen_fn = void *(*)(const char *filename, int flag, void *address);
void *handle = ::dlopen("libdl.so", RTLD_NOW);//打开libel.so
//这里直接调用其__loader_dlopen方法,它与dlopen区别是可以传入caller address
auto __loader_dlopen = reinterpret_cast<__loader_dlopen_fn>(::dlsym(handle,"__loader_dlopen"));
__loader_dlopen(lib_name, flags, (void *) dlerror);//传入dlerror系统函数地址,保证caller address校验通过,绕过Android N限制。


Android Q及其以上的版本

因为Q引入了runtime namespace,因此__loader_dlopen返回的handle为nullptr

这里通过dl_iterate_phdr在当前进程中查询已加载的符合条件的动态库基对象地址。


int DlFcn::dl_iterate_callback(dl_phdr_info *info, size_t size, void *data) {
auto target = reinterpret_cast<dl_iterate_data *>(data);
if (info->dlpi_addr != 0 && strstr(info->dlpi_name, target->info_.dlpi_name)) {
target->info_.dlpi_addr = info->dlpi_addr;
target->info_.dlpi_phdr = info->dlpi_phdr;
target->info_.dlpi_phnum = info->dlpi_phnum;
// break iterate
return 1;
}

// continue iterate
return 0;
}

dl_iterate_data data{};
data.info_.dlpi_name = "libart.so";
dl_iterate_phdr(dl_iterate_callback, &data);
CHECKP(data.info_.dlpi_addr > 0)
handle = __loader_dlopen(lib_name, flags, (void *) data.info_.dlpi_addr);


这里dl_iterate_callback会回调当前进程所装载的每一个动态库,这里过滤出libart.so对应的地址:data.info_.dlpi_addr,再通过__loader_dlopen尝试打开libart.so。

附:


struct dl_phdr_info {
ElfW(Addr) dlpi_addr;//基对象地址
const ElfW(Phdr)* dlpi_phdr;//指针数组
ElfW(Half) dlpi_phnum;//
...
};


这便是快手自研的kwai-linker组件通过caller address替换和dl_iterate_phdr解析绕过Android 7.0对调用系统库做的限制的具体实现。也是fork dump方案的核心技术点。

4.3 内存泄漏检测实现

内存泄漏检测核心代码在于SuspicionLeaksFinder.find


public Pair<List<ApplicationLeak>, List<LibraryLeak>> find() {
boolean indexed = buildIndex();
if (!indexed) {
return null;
}
initLeakDetectors();
findLeaks();
return findPath();
}


4.3.1 buildIndex()


private boolean buildIndex() {
Hprof hprof = Hprof.Companion.open(hprofFile.file());
//选择可以作为gcroot的类类型
KClass<GcRoot>[] gcRoots = new KClass[]{
Reflection.getOrCreateKotlinClass(GcRoot.JniGlobal.class),
//Reflection.getOrCreateKotlinClass(GcRoot.JavaFrame.class),
Reflection.getOrCreateKotlinClass(GcRoot.JniLocal.class),
//Reflection.getOrCreateKotlinClass(GcRoot.MonitorUsed.class),
Reflection.getOrCreateKotlinClass(GcRoot.NativeStack.class),
Reflection.getOrCreateKotlinClass(GcRoot.StickyClass.class),
Reflection.getOrCreateKotlinClass(GcRoot.ThreadBlock.class),
Reflection.getOrCreateKotlinClass(GcRoot.ThreadObject.class),
Reflection.getOrCreateKotlinClass(GcRoot.JniMonitor.class)};

//解析hprof文件为HeapGraph对象
heapGraph = HprofHeapGraph.Companion.indexHprof(hprof, null,
kotlin.collections.SetsKt.setOf(gcRoots));
return true;
}

fun indexHprof(
hprof: Hprof,
proguardMapping: ProguardMapping? = null,
indexedGcRootTypes: Set<KClass<out GcRoot>> = setOf(
JniGlobal::class,
JavaFrame::class,
JniLocal::class,
MonitorUsed::class,
NativeStack::class,
StickyClass::class,
ThreadBlock::class,
ThreadObject::class,
JniMonitor::class
)
): HeapGraph {
//确认对应的record的index
val index = HprofInMemoryIndex.createReadingHprof(hprof, proguardMapping, indexedGcRootTypes)
//HprofHeapGraph是HeapGraph的实现类
return HprofHeapGraph(hprof, index)
}


HprofInMemoryIndex.createReadingHprof核心逻辑:读取hprof文件,将不同内容封装为不同的record,然后将record转为索引化的index封装,之后查找内容可以通过index去索引到。

HprofReader.readHprofRecords() 封装record

  • LoadClassRecord
  • InstanceSkipContentRecord
  • ObjectArraySkipContentRecord
  • PrimitiveArraySkipContentRecord

HprofInMemoryIndex.onHprofRecord() 封装index:

  • classIndex
  • instanceIndex
  • objectArrayIndex
  • primitiveArrayIndex
class HprofHeapGraph internal constructor(
private val hprof: Hprof,
private val index: HprofInMemoryIndex
) : HeapGraph {
...
override val gcRoots: List<GcRoot>
get() = index.gcRoots()
override val objects: Sequence<HeapObject>
get() {
return index.indexedObjectSequence().map {wrapIndexedObject(it.second, it.first)}
}
override val classes: Sequence<HeapClass>
get() {
return index.indexedClassSequence().map {val objectId = it.first
val indexedObject = it.second
HeapClass(this, indexedObject, objectId)
}
}
override val instances: Sequence<HeapInstance>
get() {
return index.indexedInstanceSequence().map {val objectId = it.first
val indexedObject = it.second
val isPrimitiveWrapper = index.primitiveWrapperTypes.contains(indexedObject.classId)
HeapInstance(this, indexedObject, objectId, isPrimitiveWrapper)
}
}

override val objectArrays: Sequence<HeapObjectArray>
get() = index.indexedObjectArraySequence().map {val objectId = it.first
val indexedObject = it.second
val isPrimitiveWrapper = index.primitiveWrapperTypes.contains(indexedObject.arrayClassId)
HeapObjectArray(this, indexedObject, objectId, isPrimitiveWrapper)
}

override val primitiveArrays: Sequence<HeapPrimitiveArray>
get() = index.indexedPrimitiveArraySequence().map {val objectId = it.first
val indexedObject = it.second
HeapPrimitiveArray(this, indexedObject, objectId)
}


Hprof 经过层层转换最终封装为HprofHeapGraph。

简而言之,这部分功能主要是将Hrpof文件按照扫描的格式解析为结构化的索引关系图,索引化后的内容封装为HprofHeapGraph,由它去通过对应的起始索引去定位每类数据。没有细抠这部分的实现细节,实现这个功能的库之前是squere的HAHA,现在改为shark,但是提供的功能大同小异。

4.3.2 initLeakDetectors() 与findLeaks()

初始化泄漏检测者:


private void initLeakDetectors() {
addDetector(new ActivityLeakDetector(heapGraph));
addDetector(new FragmentLeakDetector(heapGraph));
addDetector(new BitmapLeakDetector(heapGraph));
addDetector(new NativeAllocationRegistryLeakDetector(heapGraph));
addDetector(new WindowLeakDetector(heapGraph));
ClassHierarchyFetcher.initComputeGenerations(computeGenerations);
leakReasonTable = new HashMap<>();
}


初始化各类型泄漏的检测者,主要包含Activity、Fragment、Bitmap+NativeAllocationRegistry、window的泄漏检测。

其次是梳理以上几类对象类继承关系串,检测覆盖到他们的子类。


public void findLeaks() {
KLog.i(TAG, "start find leaks");
//从HprofHeapGraph中获取所有instance
Sequence<HeapObject.HeapInstance> instances = heapGraph.getInstances();
Iterator<HeapObject.HeapInstance> instanceIterator = instances.iterator();
while (instanceIterator.hasNext()) {
HeapObject.HeapInstance instance = instanceIterator.next();
if (instance.isPrimitiveWrapper()) {
continue;
}
ClassHierarchyFetcher.process(instance.getInstanceClassId(),
instance.getInstanceClass().getClassHierarchy());
for (LeakDetector leakDetector : leakDetectors) {
//是检测对象的子类&满足对应泄漏条件
if (leakDetector.isSubClass(instance.getInstanceClassId())
&& leakDetector.isLeak(instance)) {
ClassCounter classCounter = leakDetector.instanceCount();
if (classCounter.leakInstancesCount <=
SAME_CLASS_LEAK_OBJECT_GC_PATH_THRESHOLD) {
leakingObjects.add(instance.getObjectId());
leakReasonTable.put(instance.getObjectId(), leakDetector.leakReason());
}
}
}
}

//关注class和对应instance数量,加入json
HeapAnalyzeReporter.addClassInfo(leakDetectors);
findPrimitiveArrayLeaks();
findObjectArrayLeaks();
}


这里重点看看各类型对象是如何判断泄漏的:


ActivityLeakDetector:

private static final String ACTIVITY_CLASS_NAME = "android.app.Activity";
private static final String FINISHED_FIELD_NAME = "mFinished";
private static final String DESTROYED_FIELD_NAME = "mDestroyed";
public boolean isLeak(HeapObject.HeapInstance instance) {
activityCounter.instancesCount++;
HeapField destroyField = instance.get(ACTIVITY_CLASS_NAME, DESTROYED_FIELD_NAME);
HeapField finishedField = instance.get(ACTIVITY_CLASS_NAME, FINISHED_FIELD_NAME);
assert destroyField != null;
assert finishedField != null;
boolean abnormal = destroyField.getValue().getAsBoolean() == null
|| finishedField.getValue().getAsBoolean() == null;
if (abnormal) {
return false;
}
boolean leak = destroyField.getValue().getAsBoolean()
|| finishedField.getValue().getAsBoolean();
if (leak) {
activityCounter.leakInstancesCount++;
}
return leak;
}


mDestroyed和mFinish字段为true,但是实例还存在的Activity是疑似泄漏对象。


FragmentLeakDetector:

private static final String NATIVE_FRAGMENT_CLASS_NAME = "android.app.Fragment";
// native android Fragment, deprecated as of API 28.
private static final String SUPPORT_FRAGMENT_CLASS_NAME = "android.support.v4.app.Fragment";
// pre-androidx, support library version of the Fragment implementation.
private static final String ANDROIDX_FRAGMENT_CLASS_NAME = "androidx.fragment.app.Fragment";
// androidx version of the Fragment implementation
private static final String FRAGMENT_MANAGER_FIELD_NAME = "mFragmentManager”;
private static final String FRAGMENT_MCALLED_FIELD_NAME = "mCalled”;//Used to verify that subclasses call through to super class.

public FragmentLeakDetector(HeapGraph heapGraph) {
HeapObject.HeapClass fragmentHeapClass =
heapGraph.findClassByName(ANDROIDX_FRAGMENT_CLASS_NAME);
fragmentClassName = ANDROIDX_FRAGMENT_CLASS_NAME;
if (fragmentHeapClass == null) {
fragmentHeapClass = heapGraph.findClassByName(NATIVE_FRAGMENT_CLASS_NAME);
fragmentClassName = NATIVE_FRAGMENT_CLASS_NAME;
}

if (fragmentHeapClass == null) {
fragmentHeapClass = heapGraph.findClassByName(SUPPORT_FRAGMENT_CLASS_NAME);
fragmentClassName = SUPPORT_FRAGMENT_CLASS_NAME;
}

assert fragmentHeapClass != null;
fragmentClassId = fragmentHeapClass.getObjectId();
fragmentCounter = new ClassCounter();
}

public boolean isLeak(HeapObject.HeapInstance instance) {
if (VERBOSE_LOG) {
KLog.i(TAG, "run isLeak");
}
fragmentCounter.instancesCount++;
boolean leak = false;
HeapField fragmentManager = instance.get(fragmentClassName, FRAGMENT_MANAGER_FIELD_NAME);
if (fragmentManager != null && fragmentManager.getValue().getAsObject() == null) {
HeapField mCalledField = instance.get(fragmentClassName, FRAGMENT_MCALLED_FIELD_NAME);
boolean abnormal = mCalledField == null || mCalledField.getValue().getAsBoolean() == null;
if (abnormal) {
KLog.e(TAG, "ABNORMAL mCalledField is null");
return false;
}
leak = mCalledField.getValue().getAsBoolean();
if (leak) {
if (VERBOSE_LOG) {
KLog.e(TAG, "fragment leak : " + instance.getInstanceClassName());
}
fragmentCounter.leakInstancesCount++;
}
}
return leak;
}


这里分了三种fragment:

  • android.app.Fragment
  • android.support.v4.app.Fragment
  • androidx.fragment.app.Fragment

对应的FragmentManager实例为null(这表示fragment被remove了)且满足对应的mCalled为true,即非perform状态,而是对应生命周期被回调状态(onDestroy),但是实例还存在的Fragment是疑似泄漏对象。


BitmapLeakDetector

private static final String BITMAP_CLASS_NAME = "android.graphics.Bitmap”;
public boolean isLeak(HeapObject.HeapInstance instance) {
if (VERBOSE_LOG) {
KLog.i(TAG, "run isLeak");
}
bitmapCounter.instancesCount++;
HeapField fieldWidth = instance.get(BITMAP_CLASS_NAME, "mWidth");
HeapField fieldHeight = instance.get(BITMAP_CLASS_NAME, "mHeight");
assert fieldHeight != null;
assert fieldWidth != null;
boolean abnormal = fieldHeight.getValue().getAsInt() == null
|| fieldWidth.getValue().getAsInt() == null;
if (abnormal) {
KLog.e(TAG, "ABNORMAL fieldWidth or fieldHeight is null");
return false;
}

int width = fieldWidth.getValue().getAsInt();
int height = fieldHeight.getValue().getAsInt();
boolean suspicionLeak = width * height >= KConstants.BitmapThreshold.DEFAULT_BIG_BITMAP;
if (suspicionLeak) {
KLog.e(TAG, "bitmap leak : " + instance.getInstanceClassName() + " " +
"width:" + width + " height:" + height);
bitmapCounter.leakInstancesCount++;
}
return suspicionLeak;
}


这里是针对Bitmap size做判断,超过768*1366这个size的认为泄漏。

另外,NativeAllocationRegistryLeakDetector和WindowLeakDetector两类还没做具体泄漏判断规则,不参与对象泄漏检测,只是做了统计。

总结: 整体看下来,KOOM有两个值得借鉴的点:

  • 1.触发内存泄漏检测,常规是watcher activity/fragment的onDestroy,而KOOM是定期轮询查看当前内存是否到达阀值;
  • 2.dump hprof,常规是对应进程dump,而KOOM是fork进程dump。

更多Android 知识点在下方小卡片中,请点击下方小卡片进行查阅。