本篇为快锁下篇,说清楚快锁在内核态的实现,解答以下问题,它们在上篇的末尾被提出来。

  • 鸿蒙内核进程池默认上限是64个,除去两个内核进程外,剩下的都归属用户进程,理论上用户进程可以创建很多快锁,这些快锁可以用于进程间(共享快锁)也可以用于线程间(私有快锁),在快锁的生命周期中该如何保存 ?
  • 无锁时,前面已经有进程在申请锁时,如何处理好新等锁进程和旧等锁进程的关系 ?
  • 释放锁时,需要唤醒已经在等锁的进程,唤醒的顺序由什么条件决定 ?

系列篇多次提过,线程在内核层面叫任务,在内核任务比进程重要得多,调度也好,竞争也罢,都是围绕任务展开的。竞争快锁是任务间的竞争,自然会和任务(task)有紧密的联系,其在内核的表达也出现在了任务表达之中。

typedef struct { // 任务控制块
    ...
    LOS_DL_LIST     pendList;           /**< Task pend node | 如果任务阻塞时就通过它挂到各种阻塞情况的链表上,比如OsTaskWait时 */
    ...
    FutexNode       futex;		///< 指明任务在等待哪把快锁,一次只等一锁,锁和任务的关系是(1:N)关系
} LosTaskCB;

对 任务 不清楚的请翻看系列相关篇,一定要搞懂,它是内核最重要的概念,甚至没有之一,搞不懂任务就一定搞不懂内核整体的运行机制。

快锁节点 | 内核表达

FutexNode(快锁节点) 是快锁模块核心结构体,熟悉这块源码的钥匙。

typedef struct {
    UINTPTR      key;           /* private:uvaddr | 私有锁,用虚拟地址         shared:paddr | 共享锁,用物理地址 */
    UINT32       index;         /* hash bucket index | 哈希桶索引 OsFutexKeyToIndex */
    UINT32       pid;           /* private:process id   shared:OS_INVALID(-1) | 私有锁:进程ID     , 共享锁为 -1 */
    LOS_DL_LIST  pendList;      /* point to pendList in TCB struct | 指向 TCB 结构中的 pendList, 通过它找到任务*/
    LOS_DL_LIST  queueList;     /* thread list blocked by this lock | 挂等待这把锁的任务,其实这里挂到是FutexNode.queueList , 通过 queueList 可以找到 pendList ,通过 pendList又可以找到真正的任务*/
    LOS_DL_LIST  futexList;     /* point to the next FutexNode | 下一把快锁节点*/
} FutexNode;

解读

  • 首先要明白 快锁 和 快锁节点 的区别,否则看内核代码一定会懵圈,内核并没有快锁这个结构体,key就是快锁,它们的关系是 1:N 的关系 ,快锁分成了 私有锁 和 共享锁 两种类型。用key表示唯一性。共享锁用物理地址 , 私有锁用虚拟地址。为什么要这么做呢 ?
  • 私有锁的意思是进程私有,作用于同一个进程的不同任务间, 因为任务是共享进程空间的, 所以可以用虚拟地址来表示进程内的唯一性 。 但两个不同的进程会出现两个虚拟地址一样的快锁。
  • 共享锁的意思是进程共享,作用于不同进程的不同任务间,因为不同的进程都会有相同的虚拟地址范围, 所以不能用虚拟地址来表示唯一性 ,只能用物理地址。虚拟地址 : 物理地址 = N: 1,不清楚的请查看系列篇之内存映射相关篇。
  • index 内核使用哈希桶来检索快锁 , index 和 key的关系通过哈希算法(FNV-1a)来映射。注意会有同一个哈希桶中两个key一样的锁,虽然它会以极低概率出现。快锁的内核实现代码部分,个人觉得可以优化的空间很大,应好好测试下这块 ,说不定会有意想不到的 bug : ) 。
  • pid 指快锁节点进程归属,作用于私有锁。
  • pendList 指向 LosTaskCB.pendList, 通过它去唤醒和挂起任务,但并没有在源码中看到指向动作,如有看到的请告诉站长(wx: rekaily)。
  • queueList 具有相同key值的节点被queue_list串联起来表示被同一把锁阻塞的任务队列,意思就是queueList上面挂的都是等值为相同key的快锁,并按任务的优先级排好序。任务优先级高的可以先获取快锁使用权。
  • futexList 指向下一把快锁, 虽然挂的也是 FutexNode ,但是意义不一样 ! 是指queueList链表上的首个快锁节点,即不同key的快锁。能理解吗 ? 好吧 ,我承认这里面有点绕 。

哈希桶 | 管理快锁

当用户态产生锁的竞争或释放需要进行相关线程的调度操作时,会触发Futex系统调用进入内核,此时会将用户态锁的地址传入内核,并在内核的Futex中以锁地址来区分用户态的每一把锁,因为用户态可用虚拟地址空间为1GiB,为了便于查找、管理,内核Futex采用哈希桶来存放用户态传入的锁。

哈希桶共有80个,0~63 号桶用于存放私有锁(以虚拟地址进行哈希),64~79号桶用于存放共享锁(以物理地址进行哈希),所有相同的 key都掉进了同一个桶里。私有/共享属性通过用户态锁的初始化以及Futex系统调用入参确定。

#define FUTEX_INDEX_PRIVATE_MAX     64	///< 0~63号桶用于存放私有锁(以虚拟地址进行哈希),同一进程不同线程共享futex变量,表明变量在进程地址空间中的位置
///< 它告诉内核,这个futex是进程专有的,不可以与其他进程共享。它仅仅用作同一进程的线程间同步。
#define FUTEX_INDEX_SHARED_MAX      16	///< 64~79号桶用于存放共享锁(以物理地址进行哈希),不同进程间通过文件共享futex变量,表明该变量在文件中的位置
#define FUTEX_INDEX_MAX             (FUTEX_INDEX_PRIVATE_MAX + FUTEX_INDEX_SHARED_MAX) ///< 80个哈希桶
#define FUTEX_INDEX_SHARED_POS      FUTEX_INDEX_PRIVATE_MAX ///< 共享锁开始位置
FutexHash g_futexHash[FUTEX_INDEX_MAX];///< 默认80个哈希桶

typedef struct {
    LosMux      listLock;///< 内核操作lockList的互斥锁
    LOS_DL_LIST lockList;///< 用于挂载 FutexNode (Fast userspace mutex,用户态快速互斥锁)
} FutexHash;

下图来源于官方文档,基本能准确的描述管理方式,暂且使用此图(后续可能重画) , 有了这张图理解上面FutexNode会更轻松

鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下)_鸿蒙开发

任务调度

  • 无锁时就需要将当前任务挂起,可详细跟踪函数OsFutexWaitTask,无非就是根据任务的优先级调整queueList futexList queueList 这些链表上的位置
/// 将当前任务挂入等待链表中
    STATIC INT32 OsFutexWaitTask(const UINT32 *userVaddr, const UINT32 flags, const UINT32 val, const UINT32 timeOut)
    {
        INT32 futexRet;
        UINT32 intSave, lockVal;
        LosTaskCB *taskCB = NULL;
        FutexNode *node = NULL;
        UINTPTR futexKey = OsFutexFlagsToKey(userVaddr, flags);//通过地址和flags 找到 key
        UINT32 index = OsFutexKeyToIndex(futexKey, flags);//通过key找到哈希桶
        FutexHash *hashNode = &g_futexHash[index];

        if (OsFutexLock(&hashNode->listLock)) {//操作快锁节点链表前先上互斥锁
            return LOS_EINVAL;
        }
        //userVaddr必须是用户空间虚拟地址
        if (LOS_ArchCopyFromUser(&lockVal, userVaddr, sizeof(UINT32))) {//将值拷贝到内核空间
            PRINT_ERR("Futex wait param check failed! copy from user failed!\n");
            futexRet = LOS_EINVAL;
            goto EXIT_ERR;
        }

        if (lockVal != val) {//对参数内部逻辑检查
            futexRet = LOS_EBADF;
            goto EXIT_ERR;
        }
        //注意第二个参数 FutexNode *node = NULL 
        if (OsFutexInsertTaskToHash(&taskCB, &node, futexKey, flags)) {// node = taskCB->futex
            futexRet = LOS_NOK;
            goto EXIT_ERR;
        }

        SCHEDULER_LOCK(intSave);
        OsTaskWaitSetPendMask(OS_TASK_WAIT_FUTEX, futexKey, timeOut);
        OsSchedTaskWait(&(node->pendList), timeOut, FALSE);
        OsSchedLock();
        LOS_SpinUnlock(&g_taskSpin);

        futexRet = OsFutexUnlock(&hashNode->listLock);//
        if (futexRet) {
            OsSchedUnlock();
            LOS_IntRestore(intSave);
            goto EXIT_UNLOCK_ERR;
        }

        LOS_SpinLock(&g_taskSpin);
        OsSchedUnlock();

        /*
        * it will immediately do the scheduling, so there's no need to release the
        * task spinlock. when this task's been rescheduled, it will be holding the spinlock.
        */
        OsSchedResched();

        if (taskCB->taskStatus & OS_TASK_STATUS_TIMEOUT) {
            taskCB->taskStatus &= ~OS_TASK_STATUS_TIMEOUT;
            SCHEDULER_UNLOCK(intSave);
            return OsFutexDeleteTimeoutTaskNode(hashNode, node);
        }

        SCHEDULER_UNLOCK(intSave);
        return LOS_OK;

    EXIT_ERR:
        (VOID)OsFutexUnlock(&hashNode->listLock);
    EXIT_UNLOCK_ERR:
        return futexRet;
    }
  • 释放锁时就需要将queueList上挂起任务唤醒,可详细跟踪函数OsFutexWaitTask,如果没有任务再等锁了就DeleteKey
STATIC INT32 OsFutexWakeTask(UINTPTR futexKey, UINT32 flags, INT32 wakeNumber, FutexNode **newHeadNode, BOOL *wakeAny)
     {
         UINT32 intSave;
         FutexNode *node = NULL;
         FutexNode *headNode = NULL;
         UINT32 index = OsFutexKeyToIndex(futexKey, flags);
         FutexHash *hashNode = &g_futexHash[index];
         FutexNode tempNode = { //先组成一个临时快锁节点,目的是为了找到哈希桶中是否有这个节点
             .key = futexKey,
             .index = index,
             .pid = (flags & FUTEX_PRIVATE) ? LOS_GetCurrProcessID() : OS_INVALID,
         };

         node = OsFindFutexNode(&tempNode);//找快锁节点
         if (node == NULL) {
             return LOS_EBADF;
         }

         headNode = node;

         SCHEDULER_LOCK(intSave);
         OsFutexCheckAndWakePendTask(headNode, wakeNumber, hashNode, newHeadNode, wakeAny);//再找到等这把锁的唤醒指向数量的任务
         if ((*newHeadNode) != NULL) {
             OsFutexReplaceQueueListHeadNode(headNode, *newHeadNode);
             OsFutexDeinitFutexNode(headNode);
         } else if (headNode->index < FUTEX_INDEX_MAX) {
             OsFutexDeleteKeyFromFutexList(headNode);
             OsFutexDeinitFutexNode(headNode);
         }
         SCHEDULER_UNLOCK(intSave);

         return LOS_OK;
     }

经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?

为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。

鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下)_harmonyos_02

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下)_OpenHarmony_03

开发基础知识:

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下)_鸿蒙开发_04

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下)_harmonyos_05

鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下)_OpenHarmony_06

OpenHarmony 开发环境搭建

鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下)_鸿蒙内核_07

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……
  • 系统架构分析
  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下)_移动开发_08

鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下)_移动开发_09

写在最后

如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙

  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。