通常的Nim游戏的定义是这样的:
有若干堆石子,每堆石子的数量都是有限的,合法的移动是“选择一堆石子并拿走若干颗(不能不拿)”,如果轮到某个人时所有的石子堆都已经被拿空了,则判负(因为他此刻没有任何合法的移动)。
这个游戏很久以前就已经有了,可是必胜策略直至20世纪初才被哈佛大学的一个叫做Charles Leonard Bouton的数学家找到,可见其思维难度。可是,这个必胜策略却只要由一个运算就搞定了:Xor(异或)运算,可见Xor运算之神奇。没有好好学过程序设计的人估计对Xor运算不甚熟悉,更不可能知道他的神奇应用了,因此我先说一说Xor运算。
Xor运算是位运算的一种,和And、Or运算类似,假如a、b都是布尔变量,则a Xor b被定义为:a、b相异则为真(所以中文名字叫做异或),a、b相同则为假。其真值表为:1Xor0=1, 0Xor1=1, 1Xor1=0, 0Xor0=0。众所周知,位运算也可以用于两个数之间,其定义就是把这两个数转化为二进制,然后一位一位的进行位运算。比如说1Xor4=(001)2 Xor(100)2=(101)2=5。位运算除了具有交换律、结合律这样的普通性质之外,还有几条神奇的性质。
Xor运算的神奇性质之一,就是他自己是自己的逆运算,即对于任何两个布尔变量或者数有(a Xor b)Xor b=a。这一点可以从真值表直接验证。有了这样一个性质,我们就可以把交换两个数的函数swap改进一下。大家应该都知道swap可以这么做:
void swap(int &a, int &b)
{a=a+b; b=a-b; a=a-b;}
现在我们知道了Xor运算是本身的逆运算之后,就可以把上面的函数改成这个样子:(在C/C++里面把Xor表示为^)
void swap(int &a, int &b)
{a=a^b; b=a^b; a=a^b;}
乍一看肯定会觉得这个交换函数写的非常诡异,但是仔细一看就知道其原理和刚才那个是一模一样的。而且因为计算机在执行位运算的时候肯定比加减法要快,所以用Xor写的交换函数实际上还更快。
Xor的第二个神奇性质,是他满足消去率,即由a Xor c=b Xor c可以推出a=b,可以用上面一条性质轻松验证。这一点是And、Or运算都不能满足的,是加法减法拥有的性质。有了这样一条性质是很有用的,比如说证明Nim游戏的必胜策略就需要用到,下面我们进入Nim游戏必胜策略的介绍和证明。
因为题主说的3堆硬币的情况和N堆的策略是一样的,我就直接拿N堆说事。设这N堆硬币的数量分别为a1,a2,...,an。因为总是打Xor太麻烦,下面我就用C++的习惯用^来代替Xor。
要知道,像Nim游戏这种博弈问题,最重要的是寻找必败态。这个必败态的的意思就是,这样一种局面摆在面前的话先手必败。其严格定义如下:1、无法进行任何移动的局面是必败态;2、可以移动到必败态的局面是非必败态;3、在必败态做的所有操作的结果都是非必败态。这个还是很好理解的吧,就是自己处在非必败态上总能移动到必败态把必败态留给对方,而对方处在必败态的话总是只能移动到非必败态,把非必败态留给自己,然后自己继续虐对方。
而对于Nim游戏,局面是必败态当且仅当所有堆硬币的数量都异或起来结果为0,即:
a1^a2^...^an=0
为了证明之,我们只要证明它满足上述必败态的三条性质即可。
第一个命题显然,最终局面只有一个,就是全0,异或仍然是0。
第二个命题,对于某个局面(a1,a2,...,an),若a1^a2^...^an不为0,一定存在某个合法的移动,将ai改变成ai'后满足a1^a2^...^ai'^...^an=0。不妨设a1^a2^...^an=k,则一定存在某个ai,它的二进制表示在k的最高位上是1(否则k的最高位那个1是怎么得到的)。这时ai^k<ai一定成立。则我们可以将ai改变成ai'=ai^k,此时a1^a2^...^ai'^...^an=a1^a2^...^an^k=0。
第三个命题,对于某个局面(a1,a2,...,an),若a1^a2^...^an=0,一定不存在某个合法的移动,将ai改变成ai'后满足a1^a2^...^ai'^...^an=0。因为异或运算满足消去率,由a1^a2^...^an=a1^a2^...^ai'^...^an可以得到ai=ai'。所以将ai改变成ai'不是一个合法的移动。证毕。
根据这个定理,我们可以在O(n)的时间内判断一个Nim的局面的性质,且如果它是N-position,也可以在O(n)的时间内找到所有的必胜策略。Nim问题就这样基本上完美的解决了。
------------------------------------------------------------------------------------------------
如果把Nim的规则略加改变,你还能很快找出必胜策略吗?比如说:有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗……
这时候如果只掌握了Xor的话,还是不能应付这种奇葩的情况的,所以我们还要祭出一个大杀器——SG函数(Sprague-Garundy),不过在提这个函数前,还是有一些铺垫知识需要了解:
定义P-position和N-position,其中P代表Previous,N代表Next。直观的说,上一次move的人有必胜策略的局面是P-position,也就是“后手可保证必胜”或者“先手必败”,现在轮到move的人有必胜策略的局面是N-position,也就是“先手可保证必胜”。更严谨的定义是:1、无法进行任何移动的局面(也就是terminal position)是P-position;2、可以移动到P-position的局面是N-position;3、所有移动都导致N-position的局面是P-position。
给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移 动者判负。事实上,这个游戏可以认为是所有Impartial Combinatorial Games的抽象模型。也就是说,任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下 面我们就在有向无环图的顶点上定义Sprague-Garundy函数。首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、 mex{2,3,5}=0、mex{}=0。
对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Garundy函数g如下:g(x)=mex{ g(y) | y是x的后继 }。
来看一下SG函数的性质。首先,所有的terminal position所对应的顶点,也就是没有出边的顶点,其SG值为0,因为它的后继集合是空集。然后对于一个g(x)=0的顶点x,它的所有后继y都满足 g(y)!=0。对于一个g(x)!=0的顶点,必定存在一个后继y满足g(y)=0。 以上这三句话表明,顶点x所代表的postion是 P-position当且仅当g(x)=0(跟P-positioin/N-position的 定义的那三句话是完全对应的)。我们通过计算有向无环图的每个顶点的SG值,就可以对每种局面找到必胜策略了。但SG函数的用途远没有这样简单。如果将有向图游戏变复杂一点,比如说,有向图上并不是只有一枚棋子,而是有n枚棋子,每次可以任选一颗进行移动,这时,怎样找到必胜策略呢?
让我们 再来考虑一下顶点的SG值的意义。当g(x)=k时,表明对于任意一个0<=i<k,都存在x的一个后继y满足g(y)=i。也 就是说,当某枚棋子的SG值是k时,我们可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。不知道你能不能根据这个联想到Nim游戏, Nim游戏的规则就是:每次选择一堆数量为k的石子,可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。这表明,如果将n枚棋子所在的顶 点的SG值看作n堆相应数量的石子,那么这个Nim游戏的每个必胜策略都对应于原来这n枚棋子的必胜策略!
对于n个棋子,设它们对应的顶点的SG值分别为(a1,a2,…,an),再设局面(a1,a2,…,an)时的Nim游戏的一种必胜策略是把ai变成k,那么原游戏的一种必胜策略就是把第i枚棋子移动到一个SG值为k的顶点。这听上去有点过于神奇——怎么绕了一圈又回到Nim游戏上了。
其实我们还是只要证明这种多棋子的有向图游戏的局面是P-position当且仅当所有棋子所在的位置的SG函数的异或为0。这个证明与上节的Bouton’s Theorem几乎是完全相同的,只需要适当的改几个名词就行了。
刚才,我为了使问题看上去更容易一些,认为n枚棋子是在一个有向图上移动。但如果不是在一个有向图上,而是每个棋子在一个有向图上,每次可以任选一个棋子(也就是任选一个有向图)进行移动,这样也不会给结论带来任何变化。
所以我们可以定义有向图游戏的和(Sum of Graph Games):设G1、G2、……、Gn是n个有向图游戏,定义游戏G是G1、G2、……、Gn的和(Sum),游戏G的移动规则是:任选一个子游戏Gi 并移动上面的棋子。Sprague-Grundy Theorem就是:g(G)=g(G1)^g(G2)^…^g(Gn)。也就是说,游戏的和的SG函数值是它的所有子游戏的SG函数值的异或。
再考虑在本文一开头的一句话:任何一个ICG都可以抽象成一个有向图游戏。所以“SG函数”和“游戏的和”的概念就不是局限于有向图游戏。我们给每个ICG的每个position定义SG值,也可以定义n个ICG的和。所以说当我们面对由n个游戏组合成的一个游戏时,只需对于每个游戏找出求它的每个局面的SG值的方法,就可以把这些SG值全部看成Nim的石子堆,然后依照找Nim的必胜策略的方法来找这个游戏的必胜策略了!
回到开头的问题。有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗…… 我们可以把它看作3个子游戏,第1个子游戏只有一堆石子,每次可以取1、2、3颗,很容易看出x颗石子的局面的SG值是x%4。第2个子游戏也是只有一堆 石子,每次可以取奇数颗,经过简单的画图可以知道这个游戏有x颗石子时的SG值是x%2。第3个游戏有n-2堆石子,就是一个Nim游戏。对于原游戏的每 个局面,把三个子游戏的SG值异或一下就得到了整个游戏的SG值,然后就可以根据这个SG值判断是否有必胜策略以及做出决策了。其实看作3个子游戏还是保 守了些,干脆看作n个子游戏,其中第1、2个子游戏如上所述,第3个及以后的子游戏都是“1堆石子,每次取几颗都可以”,称为“任取石子游戏”,这个超简单的游戏有x颗石子的SG值显然就是x。其实,n堆石子的Nim游戏本身不就是n个“任取石子游戏”的和吗?
所以,对于我们来说,SG函数与“游戏的和”的概念不是让我们去组合、制造稀奇古怪的游戏,而是把遇到的看上去有些复杂的游戏试图分成若干个子游戏,对于每个比原游戏简化很多的子游戏找出它的SG函数,然后全部异或起来就得到了原游戏的SG函数,就可以解决原游戏了。
最后附上当年征战亚洲赛的SG函数模板一份:
#define MAX 1005
/*
计算从1-n范围内的SG值。
Array(存储可以走的步数,Array[0]表示可以有多少种走法)
Array[]需要从小到大排序
/*HDU1847博弈SG函数
1.可选步数为1-m的连续整数,直接取模即可,SG(x) = x % (m+1);
2.可选步数为任意步,SG(x) = x;
3.可选步数为一系列不连续的数,用GetSG(计算)
*/
int SG[MAX], hash[MAX];
void GetSG(int Array[], int n = MAX-1) {
memset(SG, 0, sizeof(SG));
for(int i = 0; i <= n; ++i) {
memset(hash, 0, sizeof(hash));
for(int j = 1; j <= Array[0]; ++j) {
if(i < Array[j]) break;
hash[SG[i - Array[j]]] = 1;
}
for(int j = 0; j <= n; ++j)
if(!hash[j]) {
SG[i] = j;
break;
}
}
}