算法

 

假如有一组数为3,12,24,36,55,68,75,88要查给定的值24.可设三个变量front,mid,end分别指向数据的上界,中间和下界,mid=(front+end)/2.  

1.开始令front=0(指向3),end=7(指向88),则mid=3(指向36)。因为mid>x,故应在前半段中查找。
2.令新的end=mid-1=2,而front=0不变,则新的mid=1。此时x>mid,故确定应在后半段中查找。
3.令新的front=mid+1=2,而end=2不变,则新的mid=2,此时a[mid]=x,查找成功。如果要查找的数不是数列中的数,例如x=25,当第三次判断时,x>a[mid],按以上规律,令front=mid+1,即front=3,出现front>end的情况,表示查找不成功。

 

例:在有序的有N个元素的数组中查找用户输进去的数据x。算法如下:

1.确定查找范围front=0,end=N-1,计算中项mid=(front+end)/2。

2.若a[mid]=x或front>=end,则结束查找;否则,向下继续。

3.若a[mid]<x,说明待查找的元素值只可能在比中项元素大的范围内,则把mid+1的值赋给front,并重新计算mid,转去执行步骤2;若a[mid]>x,说明待查找的元素值只可能在比中项元素小的范围内,则把mid-1的值赋给end,并重新计算mid,转去执行步骤2。

 

[一维数组,折半查找]2算法复杂度分析

 时间复杂度

  1.最坏情况查找最后一个元素(或者第一个元素)Master定理T(n)=T(n/2)+O(1)所以T(n)=O(logn)
  2.最好情况查找中间元素O(1)查找的元素即为中间元素(奇数长度数列的正中间,偶数长度数列的中间靠左的元素)

空间复杂度:

  S(n)=n

 

Java实现代码

 

package com.leo.kang.interview;

public class BinarySearch {

	// 查找次数
	static int count;

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

		System.out.println(searchRecursive(array, 0, array.length - 1, 9));
		System.out.println(count);
		count = 0;
		System.out.println(searchLoop(array, 9));
		System.out.println(count);
	}

	/**
	 * 执行递归二分查找,返回第一次出现该值的位置
	 * 
	 * @param array
	 *            已排序的数组
	 * @param start
	 *            开始位置
	 * @param end
	 *            结束位置
	 * @param findValue
	 *            需要找的值
	 * @return 值在数组中的位置,从0开始。找不到返回-1
	 */
	public static int searchRecursive(int[] array, int start, int end,
			int findValue) {
		// 如果数组为空,直接返回-1,即查找失败
		if (array == null) {
			return -1;
		}
		count++;
		if (start <= end) {
			// 中间位置
			int middle = (start + end) / 1;
			// 中值
			int middleValue = array[middle];

			if (findValue == middleValue) {
				// 等于中值直接返回
				return middle;
			} else if (findValue < middleValue) {
				// 小于中值时在中值前面找
				return searchRecursive(array, start, middle - 1, findValue);
			} else {
				// 大于中值在中值后面找
				return searchRecursive(array, middle + 1, end, findValue);
			}
		} else {
			// 返回-1,即查找失败
			return -1;
		}
	}

	/**
	 * 循环二分查找,返回第一次出现该值的位置
	 * 
	 * @param array
	 *            已排序的数组
	 * @param findValue
	 *            需要找的值
	 * @return 值在数组中的位置,从0开始。找不到返回-1
	 */
	public static int searchLoop(int[] array, int findValue) {
		// 如果数组为空,直接返回-1,即查找失败
		if (array == null) {
			return -1;
		}

		// 起始位置
		int start = 0;

		// 结束位置
		int end = array.length - 1;

		while (start <= end) {
			count++;
			// 中间位置
			int middle = (start + end) / 2;
			// 中值
			int middleValue = array[middle];

			if (findValue == middleValue) {
				// 等于中值直接返回
				return middle;
			} else if (findValue < middleValue) {
				// 小于中值时在中值前面找
				end = middle - 1;
			} else {
				// 大于中值在中值后面找
				start = middle + 1;
			}
		}
		// 返回-1,即查找失败
		return -1;
	}
}