前言

上一小节我们对Spring的组成模块做了一个整体的了解《SSM源码分析之Spring03-IOC实现原理》

我们在使用Spring的时候已然了解到有两种注入方式。

  • XML注入
  • Annotation注入

这节我们讲基于XML注入方式,我们跟着源码学习一下Spring是如何实现DI(依赖注入)的?

依赖注入发生的时间

当Spring IOC 容器完成了 Bean 定义资源的定位、载入和解析注册以后,IOC 容器中已经管理类 Bean 定义的相关数据,但是此时 IOC 容器还没有对所管理的 Bean 进行依赖注入,依赖注入在以下两种情况发生:

(1).用户第一次通过 getBean 方法向 IOC 容索要 Bean 时,IOC 容器触发依赖注入。

(2).当用户在 Bean 定义资源中为元素配置了 lazy-init 属性,即让容器在解析注册 Bean 定义时进行预实例化,触发依赖注入。

BeanFactory 接口定义了 Spring IOC 容器的基本功能规范,是 Spring IOC 容器所应遵守的最底层和最基本的编程规范。BeanFactory 接口中定义了几个 getBean 方法,就是用户向 IOC 容器索取管理的 Bean 的方法,我们通过分析其子类的具体实现,理解 Spring IOC 容器在用户索取 Bean 时如何完成依赖注入。
SSM源码分析之Spring04-DI实现原理(基于XML注入)_实例化
在BeanFactory 中我们看到 getBean(String…)函数,它的具体实现在 AbstractBeanFactory中。

getBean

AbstractBeanFactory 通过 getBean 向 IOC 容器获取被管理的 Bean,AbstractBeanFactory 的 getBean 相关方法的源码如下:

//获取 IOC 容器中指定名称的 Bean

@Override

public Object getBean(String name) throws BeansException { //doGetBean 才是真正向 IOC 容器获取被管理 Bean 的过程 return doGetBean(name, null, null, false);

}


//获取 IOC 容器中指定名称和类型的 Bean

@Override

public <T> T getBean(String name, @Nullable Class<T> requiredType) throws BeansException { //doGetBean 才是真正向 IOC 容器获取被管理 Bean 的过程

return doGetBean(name, requiredType, null, false);

}


//获取 IOC 容器中指定名称和参数的 Bean

@Override

public Object getBean(String name, Object... args) throws BeansException { //doGetBean 才是真正向 IOC 容器获取被管理 Bean 的过程

return doGetBean(name, null, args, false);

}


//获取 IOC 容器中指定名称、类型和参数的 Bean

public <T> T getBean(String name, @Nullable Class<T> requiredType, @Nullable Object... args) throws BeansException {
//doGetBean 才是真正向 IOC 容器获取被管理 Bean 的过程

return doGetBean(name, requiredType, args, false);

}


@SuppressWarnings("unchecked")

//真正实现向 IOC 容器获取 Bean 的功能,也是触发依赖注入功能的地方

protected <T> T doGetBean(final String name, @Nullable final Class<T> requiredType, @Nullable final Object[] args, boolean typeCheckOnly) throws BeansException {

//根据指定的名称获取被管理 Bean 的名称,剥离指定名称中对容器的相关依赖

//如果指定的是别名,将别名转换为规范的 Bean 名称

final String beanName = transformedBeanName(name);

Object bean;
//先从缓存中取是否已经有被创建过的单态类型的 Bean

//对于单例模式的 Bean 整个 IOC 容器中只创建一次,不需要重复创建 Object sharedInstance = getSingleton(beanName);

//IOC 容器创建单例模式 Bean 实例对象

if (sharedInstance != null && args == null) {

if (logger.isDebugEnabled()) {

//如果指定名称的 Bean 在容器中已有单例模式的 Bean 被创建

//直接返回已经创建的 Bean

if (isSingletonCurrentlyInCreation(beanName)) {

logger.debug("Returning eagerly cached instance of singleton bean '" + beanName +

"' that is not fully initialized yet - a consequence of a circular reference");

}

else {

logger.debug("Returning cached instance of singleton bean '" + beanName + "'");

}

}

//获取给定 Bean 的实例对象,主要是完成 FactoryBean 的相关处理//注意:BeanFactory 是管理容器中 Bean 的工厂,而 FactoryBean 是//创建创建对象的工厂 Bean,两者之间有区别

bean = getObjectForBeanInstance(sharedInstance, name, beanName, null);

}


else {

//缓存没有正在创建的单例模式 Bean

//缓存中已经有已经创建的原型模式 Bean

//但是由于循环引用的问题导致实例化对象失败

if (isPrototypeCurrentlyInCreation(beanName)) {

throw new BeanCurrentlyInCreationException(beanName);

}


//对 IOC 容器中是否存在指定名称的 BeanDefinition 进行检查,首先检查是否//能在当前的 BeanFactory 中获取的所需要的 Bean,如果不能则委托当前容器//的父级容器去查找,如果还是找不到则沿着容器的继承体系向父级容器查找 BeanFactory parentBeanFactory = getParentBeanFactory(); //当前容器的父级容器存在,且当前容器中不存在指定名称的 Bean

if (parentBeanFactory != null && !containsBeanDefinition(beanName)) { //解析指定 Bean 名称的原始名称

String nameToLookup = originalBeanName(name);

if (parentBeanFactory instanceof AbstractBeanFactory) { return ((AbstractBeanFactory) parentBeanFactory).doGetBean(
nameToLookup, requiredType, args, typeCheckOnly);

}

else if (args != null) {
//委派父级容器根据指定名称和显式的参数查找

return (T) parentBeanFactory.getBean(nameToLookup, args);

}

else {

//委派父级容器根据指定名称和类型查找

return parentBeanFactory.getBean(nameToLookup, requiredType);

}

}


//创建的 Bean 是否需要进行类型验证,一般不需要

if (!typeCheckOnly) {

//向容器标记指定的 Bean 已经被创建

markBeanAsCreated(beanName);

}


try {

//根据指定 Bean 名称获取其父级的 Bean 定义

//主要解决 Bean 继承时子类合并父类公共属性问题

final RootBeanDefinition mbd = getMergedLocalBeanDefinition(beanName); checkMergedBeanDefinition(mbd, beanName, args);

//获取当前 Bean 所有依赖 Bean 的名称

String[] dependsOn = mbd.getDependsOn();

//如果当前 Bean 有依赖 Bean

if (dependsOn != null) {

for (String dep : dependsOn) {

if (isDependent(beanName, dep)) {

throw new BeanCreationException(mbd.getResourceDescription(), beanName,

"Circular depends-on relationship between '" + beanName + "' and '" + dep + "'");

}

//递归调用 getBean 方法,获取当前 Bean 的依赖 Bean

registerDependentBean(dep, beanName);

//把被依赖 Bean 注册给当前依赖的 Bean

getBean(dep);

}

}


//创建单例模式 Bean 的实例对象

if (mbd.isSingleton()) {

//这里使用了一个匿名内部类,创建 Bean 实例对象,并且注册给所依赖的对象 sharedInstance = getSingleton(beanName, () -> {

try {

//创建一个指定 Bean 实例对象,如果有父级继承,则合并子类和父类的定义 return createBean(beanName, mbd, args);
}

catch (BeansException ex) {

//显式地从容器单例模式 Bean 缓存中清除实例对象

destroySingleton(beanName);

throw ex;

}

});

//获取给定 Bean 的实例对象

bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);

}


//IOC 容器创建原型模式 Bean 实例对象

else if (mbd.isPrototype()) {

//原型模式(Prototype)是每次都会创建一个新的对象

Object prototypeInstance = null;

try {

//回调 beforePrototypeCreation 方法,默认的功能是注册当前创建的原型对象 beforePrototypeCreation(beanName);

//创建指定 Bean 对象实例

prototypeInstance = createBean(beanName, mbd, args);

}

finally {

//回调 afterPrototypeCreation 方法,默认的功能告诉 IOC 容器指定 Bean 的原型对象不再创建 afterPrototypeCreation(beanName);

}

//获取给定 Bean 的实例对象

bean = getObjectForBeanInstance(prototypeInstance, name, beanName, mbd);

}


//要创建的 Bean 既不是单例模式,也不是原型模式,则根据 Bean 定义资源中//配置的生命周期范围,选择实例化 Bean 的合适方法,这种在 Web 应用程序中//比较常用,如:request、session、application 等生命周期

else {

String scopeName = mbd.getScope();

final Scope scope = this.scopes.get(scopeName); //Bean 定义资源中没有配置生命周期范围,则 Bean 定义不合法 if (scope == null) {

throw new IllegalStateException("No Scope registered for scope name '" + scopeName + "'");

}

try {

//这里又使用了一个匿名内部类,获取一个指定生命周期范围的实例

Object scopedInstance = scope.get(beanName, () -> {

beforePrototypeCreation(beanName);

try {
return createBean(beanName, mbd, args);

}

finally {

afterPrototypeCreation(beanName);

}

});

//获取给定 Bean 的实例对象

bean = getObjectForBeanInstance(scopedInstance, name, beanName, mbd);

}

catch (IllegalStateException ex) {

throw new BeanCreationException(beanName,

"Scope '" + scopeName + "' is not active for the current thread; consider " + "defining a scoped proxy for this bean if you intend to refer to it from a singleton", ex);

}

}

}

catch (BeansException ex) {

cleanupAfterBeanCreationFailure(beanName);

throw ex;

}

}


//对创建的 Bean 实例对象进行类型检查

if (requiredType != null && !requiredType.isInstance(bean)) { try {
TconvertedBean = getTypeConverter().convertIfNecessary(bean, requiredType); if (convertedBean == null) {
throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass());

}

return convertedBean;

}

catch (TypeMismatchException ex) {

if (logger.isDebugEnabled()) {

logger.debug("Failed to convert bean '" + name + "' to required type '" + ClassUtils.getQualifiedName(requiredType) + "'", ex);
}

throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass());

}

}

return (T) bean;

}

通过上面对向 IOC 容器获取 Bean 方法的分析,我们可以看到在 Spring 中,如果 Bean 定义的单例模式(Singleton),则容器在创建之前先从缓存中查找,以确保整个容器中只存在一个实例对象。如果 Bean定义的是原型模式(Prototype),则容器每次都会创建一个新的实例对象。除此之外,Bean 定义还可以扩展为指定其生命周期范围。

上面的源码只是定义了根据 Bean 定义的模式,采取的不同创建 Bean 实例对象的策略,具体的 Bean 实例对象的创建过程由实现了 ObejctFactory 接口的匿名内部类的 createBean 方法完成, ObejctFactory 使 用 委 派 模 式 , 具 体 的 Bean 实 例 创 建 过 程 交 由 其 实 现 类 AbstractAutowireCapableBeanFactory 完 成 , 我 们 继 续 分 析 AbstractAutowireCapableBeanFactory 的 createBean 方法的源码,理解其创建 Bean 实例的具体实现过程。

创建 Bean 实例对象

AbstractAutowireCapableBeanFactory 类实现了 ObejctFactory 接口,创建容器指定的 Bean 实例对象,同时还对创建的 Bean 实例对象进行初始化处理。其创建 Bean 实例对象的方法源码如下:

//创建 Bean 实例对象

@Override

protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args) throws BeanCreationException {

if (logger.isDebugEnabled()) {

logger.debug("Creating instance of bean '" + beanName + "'");

}

RootBeanDefinition mbdToUse = mbd;


//判断需要创建的 Bean 是否可以实例化,即是否可以通过当前的类加载器加载 Class<?> resolvedClass = resolveBeanClass(mbd, beanName);

if (resolvedClass != null && !mbd.hasBeanClass() && mbd.getBeanClassName() != null) {

mbdToUse = new RootBeanDefinition(mbd);

mbdToUse.setBeanClass(resolvedClass);

}


//校验和准备 Bean 中的方法覆盖

try {

mbdToUse.prepareMethodOverrides();

}

catch (BeanDefinitionValidationException ex) {

throw new BeanDefinitionStoreException(mbdToUse.getResourceDescription(), beanName, "Validation of Method overrides failed", ex);
}


try {

//如果 Bean 配置了初始化前和初始化后的处理器,则试图返回一个需要创建 Bean 的代理对象 Object bean = resolveBeforeInstantiation(beanName, mbdToUse); if (bean != null) {
return bean;

}

}

catch (Throwable ex) {

throw new BeanCreationException(mbdToUse.getResourceDescription(), beanName, "BeanPostProcessor before instantiation of bean failed", ex);
}


try {

//创建 Bean 的入口

Object beanInstance = doCreateBean(beanName, mbdToUse, args); if (logger.isDebugEnabled()) {
logger.debug("Finished creating instance of bean '" + beanName + "'");

}

return beanInstance;

}

catch (BeanCreationException ex) {

throw ex;

}

catch (ImplicitlyAppearedSingletonException ex) {

throw ex;

}

catch (Throwable ex) {

throw new BeanCreationException(

mbdToUse.getResourceDescription(), beanName, "Unexpected exception during bean creation", ex);

}

}


//真正创建 Bean 的方法

protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args) throws BeanCreationException {

//封装被创建的 Bean 对象

BeanWrapper instanceWrapper = null;

if (mbd.isSingleton()) {

instanceWrapper = this.factoryBeanInstanceCache.remove(beanName);

}

if (instanceWrapper == null) {

instanceWrapper = createBeanInstance(beanName, mbd, args);

}

final Object bean = instanceWrapper.getWrappedInstance(); //获取实例化对象的类型

Class<?> beanType = instanceWrapper.getWrappedClass();

if (beanType != NullBean.class) {
mbd.resolvedTargetType = beanType;

}


//调用 PostProcessor 后置处理器

synchronized (mbd.postProcessingLock) {

if (!mbd.postProcessed) {

try {

applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName);

}

catch (Throwable ex) {

throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Post-processing of merged bean definition failed", ex);
}

mbd.postProcessed = true;

}

}


//向容器中缓存单例模式的 Bean 对象,以防循环引用

boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences && isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {

if (logger.isDebugEnabled()) {

logger.debug("Eagerly caching bean '" + beanName +

"' to allow for resolving potential circular references");

}

//这里是一个匿名内部类,为了防止循环引用,尽早持有对象的引用 addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));

}


//Bean 对象的初始化,依赖注入在此触发

//这个 exposedObject 在初始化完成之后返回作为依赖注入完成后的 Bean

Object exposedObject = bean;

try {

//将 Bean 实例对象封装,并且 Bean 定义中配置的属性值赋值给实例对象 populateBean(beanName, mbd, instanceWrapper);

//初始化 Bean 对象

exposedObject = initializeBean(beanName, exposedObject, mbd);

}

catch (Throwable ex) {

if (ex instanceof BeanCreationException && beanName.equals(((BeanCreationException) ex).getBeanName())) { throw (BeanCreationException) ex;
}

else {

throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Initialization of bean failed", ex);

}

}


if (earlySingletonExposure) {

//获取指定名称的已注册的单例模式 Bean 对象

Object earlySingletonReference = getSingleton(beanName, false); if (earlySingletonReference != null) {
//根据名称获取的已注册的 Bean 和正在实例化的 Bean 是同一个

if (exposedObject == bean) {

//当前实例化的 Bean 初始化完成

exposedObject = earlySingletonReference;

}

//当前 Bean 依赖其他 Bean,并且当发生循环引用时不允许新创建实例对象

else if (!this.allowRawInjectionDespiteWrapping && hasDependentBean(beanName)) { String[] dependentBeans = getDependentBeans(beanName);
Set<String> actualDependentBeans = new LinkedHashSet<>(dependentBeans.length); //获取当前 Bean 所依赖的其他 Bean

for (String dependentBean : dependentBeans) {

//对依赖 Bean 进行类型检查

if (!removeSingletonIfCreatedForTypeCheckOnly(dependentBean)) { actualDependentBeans.add(dependentBean);
}

}

if (!actualDependentBeans.isEmpty()) {

throw new BeanCurrentlyInCreationException(beanName,

"Bean with name '" + beanName + "' has been injected into other beans [" + StringUtils.collectionToCommaDelimitedString(actualDependentBeans) +
"] in its raw version as part of a circular reference, but has eventually been " + "wrapped. This means that said other beans do not use the final version of the " + "bean. This is often the result of over-eager type matching - consider using " + "'getBeanNamesOfType' with the 'allowEagerInit' flag turned off, for example.");

}

}

}

}


//注册完成依赖注入的 Bean

try {

registerDisposableBeanIfNecessary(beanName, bean, mbd);

}

catch (BeanDefinitionValidationException ex) {

throw new BeanCreationException(

mbd.getResourceDescription(), beanName, "Invalid destruction signature", ex);
}


return exposedObject;

}

通过对方法源码的分析,我们看到具体的依赖注入实现在以下两个方法中:

(1).createBeanInstance:生成 Bean 所包含的 java 对象实例。

(2).populateBean :对 Bean 属性的依赖注入进行处理。

下面继续分析这两个方法的代码实现。

创建 Bean的java实例对象

在 createBeanInstance 方法中,根据指定的初始化策略,使用静态工厂、工厂方法或者容器的自动装配特性生成 java 实例对象,创建对象的源码如下:

//创建 Bean 的实例对象

protected BeanWrapper createBeanInstance(String beanName, RootBeanDefinition mbd, @Nullable Object[] args) { //检查确认 Bean 是可实例化的

Class<?> beanClass = resolveBeanClass(mbd, beanName);


//使用工厂方法对 Bean 进行实例化

if (beanClass != null && !Modifier.isPublic(beanClass.getModifiers()) && !mbd.isNonPublicAccessAllowed()) { throw new BeanCreationException(mbd.getResourceDescription(), beanName,
"Bean class isn't public, and non-public access not allowed: " + beanClass.getName());

}


Supplier<?> instanceSupplier = mbd.getInstanceSupplier(); if (instanceSupplier != null) {
return obtainFromSupplier(instanceSupplier, beanName);

}


if (mbd.getFactoryMethodName() != null)	{

//调用工厂方法实例化

return instantiateUsingFactoryMethod(beanName, mbd, args);

}


//使用容器的自动装配方法进行实例化

boolean resolved = false;

boolean autowireNecessary = false;

if (args == null) {

synchronized (mbd.constructorArgumentLock) {

if (mbd.resolvedConstructorOrFactoryMethod != null) {

resolved = true;

autowireNecessary = mbd.constructorArgumentsResolved;

}

}
}

if (resolved) {

if (autowireNecessary) {

//配置了自动装配属性,使用容器的自动装配实例化

//容器的自动装配是根据参数类型匹配 Bean 的构造方法

return autowireConstructor(beanName, mbd, null, null);

}

else {

//使用默认的无参构造方法实例化

return instantiateBean(beanName, mbd);

}

}


//使用 Bean 的构造方法进行实例化

Constructor<?>[] ctors = determineConstructorsFromBeanPostProcessors(beanClass, beanName); if (ctors != null ||
mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_CONSTRUCTOR || mbd.hasConstructorArgumentValues() || !ObjectUtils.isEmpty(args)) {
//使用容器的自动装配特性,调用匹配的构造方法实例化

return autowireConstructor(beanName, mbd, ctors, args);

}


//使用默认的无参构造方法实例化

return instantiateBean(beanName, mbd);

}


//使用默认的无参构造方法实例化 Bean 对象

protected BeanWrapper instantiateBean(final String beanName, final RootBeanDefinition mbd) { try {
Object beanInstance;

final BeanFactory parent = this;

//获取系统的安全管理接口,JDK 标准的安全管理 API

if (System.getSecurityManager() != null) {

//这里是一个匿名内置类,根据实例化策略创建实例对象

beanInstance = AccessController.doPrivileged((PrivilegedAction<Object>) () -> getInstantiationStrategy().instantiate(mbd, beanName, parent), getAccessControlContext());

}

else {

//将实例化的对象封装起来

beanInstance = getInstantiationStrategy().instantiate(mbd, beanName, parent);

}

BeanWrapper bw = new BeanWrapperImpl(beanInstance);

initBeanWrapper(bw);
return bw;

}

catch (Throwable ex) {

throw new BeanCreationException(

mbd.getResourceDescription(), beanName, "Instantiation of bean failed", ex);

}

}

经过对上面的代码分析,我们可以看出,对使用工厂方法和自动装配特性的 Bean 的实例化相当比较清楚,调用相应的工厂方法或者参数匹配的构造方法即可完成实例化对象的工作,但是对于我们最常使用的默认无参构造方法就需要使用相应的初始化策略(JDK 的反射机制或者 CGLIB)来进行初始化了,在方

法getInstantiationStrategy().instantiate()中就具体实现类使用初始策略实例化对象。

使用默认的无参构造方法实例化对象

在 使 用 默 认 的 无 参 构 造 方 法 创 建 Bean 的 实 例 化 对 象 时 , 方 法getInstantiationStrategy().instantiate()调用了 SimpleInstantiationStrategy 类中的实例化 Bean 的方法,其源码如下:

//使用初始化策略实例化 Bean 对象

@Override

public Object instantiate(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner) { // Don't override the class with CGLIB if no overrides.
//如果 Bean 定义中没有方法覆盖,则就不需要 CGLIB 父类类的方法

if (!bd.hasMethodOverrides()) {

Constructor<?> constructorToUse;

synchronized (bd.constructorArgumentLock) {

//获取对象的构造方法或工厂方法

constructorToUse = (Constructor<?>) bd.resolvedConstructorOrFactoryMethod; //如果没有构造方法且没有工厂方法

if (constructorToUse == null) {

//使用 JDK 的反射机制,判断要实例化的 Bean 是否是接口

final Class<?> clazz = bd.getBeanClass();

if (clazz.isInterface()) {

throw new BeanInstantiationException(clazz, "Specified class is an interface");

}

try {

if (System.getSecurityManager() != null) {

//这里是一个匿名内置类,使用反射机制获取 Bean 的构造方法

constructorToUse = AccessController.doPrivileged(

(PrivilegedExceptionAction<Constructor<?>>) () -> clazz.getDeclaredConstructor());

}

else {

constructorToUse = clazz.getDeclaredConstructor();

}

bd.resolvedConstructorOrFactoryMethod = constructorToUse;

}

catch (Throwable ex) {

throw new BeanInstantiationException(clazz, "No default constructor found", ex);

}

}

}

//使用 BeanUtils 实例化,通过反射机制调用”构造方法.newInstance(arg)”来进行实例化 return BeanUtils.instantiateClass(constructorToUse);

}

else {

//Must generate CGLIB subclass. //使用 CGLIB 来实例化对象

return instantiateWithMethodInjection(bd, beanName, owner);

}

}

通过上面的代码分析,我们看到了如果 Bean 有方法被覆盖了,则使用 JDK 的反射机制进行实例化,否则,使用 CGLIB 进行实例化。

instantiateWithMethodInjection 方 法 调 用 SimpleInstantiationStrategy 的 子 类

CglibSubclassingInstantiationStrategy 使用 CGLIB 来进行初始化,其源码如下:

//使用 CGLIB 进行 Bean 对象实例化

public Object instantiate(@Nullable Constructor<?> ctor, @Nullable Object... args) { //创建代理子类

Class<?> subclass = createEnhancedSubclass(this.beanDefinition);

Object instance;

if (ctor == null) {

instance = BeanUtils.instantiateClass(subclass);

}

else {

try {

Constructor<?> enhancedSubclassConstructor = subclass.getConstructor(ctor.getParameterTypes()); instance = enhancedSubclassConstructor.newInstance(args);
}

catch (Exception ex) {

throw new BeanInstantiationException(this.beanDefinition.getBeanClass(),

"Failed to invoke constructor for CGLIB enhanced subclass [" + subclass.getName() + "]", ex);

}

}


Factory factory = (Factory) instance;

factory.setCallbacks(new Callback[] {NoOp.INSTANCE,

new LookupOverrideMethodInterceptor(this.beanDefinition, this.owner), new ReplaceOverrideMethodInterceptor(this.beanDefinition, this.owner)});
return instance;
}


private Class<?> createEnhancedSubclass(RootBeanDefinition beanDefinition) { //CGLIB 中的类

Enhancer enhancer = new Enhancer();

//将 Bean 本身作为其基类

enhancer.setSuperclass(beanDefinition.getBeanClass());

enhancer.setNamingPolicy(SpringNamingPolicy.INSTANCE);

if (this.owner instanceof ConfigurableBeanFactory) {

ClassLoader cl = ((ConfigurableBeanFactory) this.owner).getBeanClassLoader(); enhancer.setStrategy(new ClassLoaderAwareGeneratorStrategy(cl));
}

enhancer.setCallbackFilter(new MethodOverrideCallbackFilter(beanDefinition)); enhancer.setCallbackTypes(CALLBACK_TYPES);
//使用 CGLIB 的 createClass 方法生成实例对象

return enhancer.createClass();

}

}

CGLIB 是一个常用的字节码生成器的类库,它提供了一系列 API 实现 java 字节码的生成和转换功能。我们在学习 JDK 的动态代理时都知道,JDK 的动态代理只能针对接口,如果一个类没有实现任何接口,要对其进行动态代理只能使用 CGLIB。

对Bean属性的依赖注入

在第 3 步的分析中我们已经了解到 Bean 的依赖注入分为以下两个过程:

(1).createBeanInstance:生成 Bean 所包含的 Java 对象实例。

(2).populateBean:对 Bean 属性的依赖注入进行处理。

上面我们已经分析了容器初始化生成 Bean 所包含的 Java 实例对象的过程,现在我们继续分析生成对象后,Spring IOC 容器是如何将 Bean 的属性依赖关系注入 Bean 实例对象中并设置好的,属性依赖注入的代码如下:


//将 Bean 属性设置到生成的实例对象上

protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) { if (bw == null) {
if (mbd.hasPropertyValues()) {

throw new BeanCreationException(

mbd.getResourceDescription(), beanName, "Cannot apply property values to null instance");

}

else {

return;

}

}


boolean continueWithPropertyPopulation = true;
if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) { for (BeanPostProcessor bp : getBeanPostProcessors()) {
if (bp instanceof InstantiationAwareBeanPostProcessor) { InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp; if (!ibp.postProcessAfterInstantiation(bw.getWrappedInstance(), beanName)) {

continueWithPropertyPopulation = false;

break;

}

}

}

}


if (!continueWithPropertyPopulation) {

return;

}

//获取容器在解析 Bean 定义资源时为 BeanDefiniton 中设置的属性值

PropertyValues pvs = (mbd.hasPropertyValues() ? mbd.getPropertyValues() : null);


if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_NAME || mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_TYPE) {
MutablePropertyValues newPvs = new MutablePropertyValues(pvs);


if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_NAME) { autowireByName(beanName, mbd, bw, newPvs);
}


if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_TYPE) { autowireByType(beanName, mbd, bw, newPvs);
}


pvs = newPvs;

}


boolean hasInstAwareBpps = hasInstantiationAwareBeanPostProcessors();

boolean needsDepCheck = (mbd.getDependencyCheck() != RootBeanDefinition.DEPENDENCY_CHECK_NONE);


if (hasInstAwareBpps || needsDepCheck) {

if (pvs == null) {

pvs = mbd.getPropertyValues();

}

PropertyDescriptor[] filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching); if (hasInstAwareBpps) {
for (BeanPostProcessor bp : getBeanPostProcessors()) {

if (bp instanceof InstantiationAwareBeanPostProcessor) {
InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;

pvs = ibp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName); if (pvs == null) {
return;

}

}

}

}

if (needsDepCheck) {

checkDependencies(beanName, mbd, filteredPds, pvs);

}

}


if (pvs != null) {

//对属性进行注入

applyPropertyValues(beanName, mbd, bw, pvs);

}

}

//解析并注入依赖属性的过程

protected void applyPropertyValues(String beanName, BeanDefinition mbd, BeanWrapper bw, PropertyValues pvs) { if (pvs.isEmpty()) {
return;

}

//封装属性值

MutablePropertyValues mpvs = null;

List<PropertyValue> original;


if (System.getSecurityManager() != null) {

if (bw instanceof BeanWrapperImpl) {

//设置安全上下文,JDK 安全机制

((BeanWrapperImpl) bw).setSecurityContext(getAccessControlContext());

}

}


if (pvs instanceof MutablePropertyValues) {

mpvs = (MutablePropertyValues) pvs;

//属性值已经转换

if (mpvs.isConverted()) {

try {

//为实例化对象设置属性值

bw.setPropertyValues(mpvs);

return;

}

catch (BeansException ex) {
throw new BeanCreationException(

mbd.getResourceDescription(), beanName, "Error setting property values", ex);

}

}

//获取属性值对象的原始类型值

original = mpvs.getPropertyValueList();

}

else {

original = Arrays.asList(pvs.getPropertyValues());

}


//获取用户自定义的类型转换

TypeConverter converter = getCustomTypeConverter();

if (converter == null) {

converter = bw;

}

//创建一个 Bean 定义属性值解析器,将 Bean 定义中的属性值解析为 Bean 实例对象的实际值

BeanDefinitionValueResolver valueResolver = new BeanDefinitionValueResolver(this, beanName, mbd, converter);


//为属性的解析值创建一个拷贝,将拷贝的数据注入到实例对象中 List<PropertyValue> deepCopy = new ArrayList<>(original.size()); boolean resolveNecessary = false; for (PropertyValue pv : original) {

//属性值不需要转换

if (pv.isConverted()) {

deepCopy.add(pv);

}

//属性值需要转换

else {

String propertyName = pv.getName();

//原始的属性值,即转换之前的属性值

Object originalValue = pv.getValue();

//转换属性值,例如将引用转换为 IOC 容器中实例化对象引用

Object resolvedValue = valueResolver.resolveValueIfNecessary(pv, originalValue); //转换之后的属性值

Object convertedValue = resolvedValue;

//属性值是否可以转换

boolean convertible = bw.isWritableProperty(propertyName) && !PropertyAccessorUtils.isNestedOrIndexedProperty(propertyName);
if (convertible) {

//使用用户自定义的类型转换器转换属性值

convertedValue = convertForProperty(resolvedValue, propertyName, bw, converter);

}

//存储转换后的属性值,避免每次属性注入时的转换工作
if (resolvedValue == originalValue) {

if (convertible) {

//设置属性转换之后的值

pv.setConvertedValue(convertedValue);

}

deepCopy.add(pv);

}

//属性是可转换的,且属性原始值是字符串类型,且属性的原始类型值不是

//动态生成的字符串,且属性的原始值不是集合或者数组类型

else if (convertible && originalValue instanceof TypedStringValue && !((TypedStringValue) originalValue).isDynamic() &&
!(convertedValue instanceof Collection || ObjectUtils.isArray(convertedValue))) { pv.setConvertedValue(convertedValue);
//重新封装属性的值

deepCopy.add(pv);

}

else {

resolveNecessary = true;

deepCopy.add(new PropertyValue(pv, convertedValue));

}

}

}

if (mpvs != null && !resolveNecessary) {

//标记属性值已经转换过

mpvs.setConverted();

}


//进行属性依赖注入

try {

bw.setPropertyValues(new MutablePropertyValues(deepCopy));

}

catch (BeansException ex) {

throw new BeanCreationException(

mbd.getResourceDescription(), beanName, "Error setting property values", ex);

}

}

分析上述代码,我们可以看出,对属性的注入过程分以下两种情况:

(1).属性值类型不需要转换时,不需要解析属性值,直接准备进行依赖注入。

(2).属性值需要进行类型转换时,如对其他对象的引用等,首先需要解析属性值,然后对解析后的属性值进行依赖注入。

对属性值的解析是在 BeanDefinitionValueResolver 类中的 resolveValueIfNecessary 方法中进行的,对属性值的依赖注入是通过 bw.setPropertyValues 方法实现的,在分析属性值的依赖注入之前,我们先分析一下对属性值的解析过程。

解析属性值

当容器在对属性进行依赖注入时,如果发现属性值需要进行类型转换,如属性值是容器中另一个 Bean 实例对象的引用,则容器首先需要根据属性值解析出所引用的对象,然后才能将该引用对象注入到目标实例对象的属性上去,对属性进行解析的由 resolveValueIfNecessary 方法实现,其源码如下:

//解析属性值,对注入类型进行转换

@Nullable

public Object resolveValueIfNecessary(Object argName, @Nullable Object value) { //对引用类型的属性进行解析

if (value instanceof RuntimeBeanReference) { RuntimeBeanReference ref = (RuntimeBeanReference) value; //调用引用类型属性的解析方法

return resolveReference(argName, ref);

}

//对属性值是引用容器中另一个 Bean 名称的解析

else if (value instanceof RuntimeBeanNameReference) {

String refName = ((RuntimeBeanNameReference) value).getBeanName(); refName = String.valueOf(doEvaluate(refName)); //从容器中获取指定名称的 Bean

if (!this.beanFactory.containsBean(refName)) {

throw new BeanDefinitionStoreException(

"Invalid bean name '" + refName + "' in bean reference for " + argName);

}

return refName;

}

//对 Bean 类型属性的解析,主要是 Bean 中的内部类

else if (value instanceof BeanDefinitionHolder) { BeanDefinitionHolder bdHolder = (BeanDefinitionHolder) value;
return resolveInnerBean(argName, bdHolder.getBeanName(), bdHolder.getBeanDefinition());

}

else if (value instanceof BeanDefinition) {

BeanDefinition bd = (BeanDefinition) value;

String innerBeanName = "(inner bean)" + BeanFactoryUtils.GENERATED_BEAN_NAME_SEPARATOR + ObjectUtils.getIdentityHexString(bd);
return resolveInnerBean(argName, innerBeanName, bd);

}

//对集合数组类型的属性解析

else if (value instanceof ManagedArray) {

ManagedArray array = (ManagedArray) value;

//获取数组的类型
Class<?> elementType = array.resolvedElementType;

if (elementType == null) {

//获取数组元素的类型

String elementTypeName = array.getElementTypeName();

if (StringUtils.hasText(elementTypeName)) {

try {

//使用反射机制创建指定类型的对象

elementType = ClassUtils.forName(elementTypeName, this.beanFactory.getBeanClassLoader()); array.resolvedElementType = elementType;
}

catch (Throwable ex) {

throw new BeanCreationException(

this.beanDefinition.getResourceDescription(), this.beanName,

"Error resolving array type for " + argName, ex);

}

}

//没有获取到数组的类型,也没有获取到数组元素的类型

//则直接设置数组的类型为 Object

else {

elementType = Object.class;

}

}

//创建指定类型的数组

return resolveManagedArray(argName, (List<?>) value, elementType);

}

//解析 list 类型的属性值

else if (value instanceof ManagedList) {

return resolveManagedList(argName, (List<?>) value);

}

//解析 set 类型的属性值

else if (value instanceof ManagedSet) {

return resolveManagedSet(argName, (Set<?>) value);

}

//解析 map 类型的属性值

else if (value instanceof ManagedMap) {

return resolveManagedMap(argName, (Map<?, ?>) value);

}

//解析 props 类型的属性值,props 其实就是 key 和 value 均为字符串的 map else if (value instanceof ManagedProperties) {

Properties original = (Properties) value;

//创建一个拷贝,用于作为解析后的返回值

Properties copy = new Properties();

original.forEach((propKey, propValue) -> {

if (propKey instanceof TypedStringValue) {
propKey = evaluate((TypedStringValue) propKey);

}

if (propValue instanceof TypedStringValue) {

propValue = evaluate((TypedStringValue) propValue);

}

if (propKey == null || propValue == null) {

throw new BeanCreationException(

this.beanDefinition.getResourceDescription(), this.beanName,

"Error converting Properties key/value pair for " + argName + ": resolved to null");

}

copy.put(propKey, propValue);

});

return copy;

}

//解析字符串类型的属性值

else if (value instanceof TypedStringValue) {

TypedStringValue typedStringValue = (TypedStringValue) value;

Object valueObject = evaluate(typedStringValue);

try {

//获取属性的目标类型

Class<?> resolvedTargetType = resolveTargetType(typedStringValue); if (resolvedTargetType != null) {
//对目标类型的属性进行解析,递归调用

return this.typeConverter.convertIfNecessary(valueObject, resolvedTargetType);

}

//没有获取到属性的目标对象,则按 Object 类型返回

else {

return valueObject;

}

}

catch (Throwable ex) {

throw new BeanCreationException(

this.beanDefinition.getResourceDescription(), this.beanName,

"Error converting typed String value for " + argName, ex);

}

}

else if (value instanceof NullBean) {

return null;

}

else {

return evaluate(value);

}

}
//解析引用类型的属性值

@Nullable

private Object resolveReference(Object argName, RuntimeBeanReference ref) { try {
Object bean;

//获取引用的 Bean 名称

String refName = ref.getBeanName();

refName = String.valueOf(doEvaluate(refName));

//如果引用的对象在父类容器中,则从父类容器中获取指定的引用对象 if (ref.isToParent()) {

if (this.beanFactory.getParentBeanFactory() == null) {

throw new BeanCreationException(

this.beanDefinition.getResourceDescription(), this.beanName, "Can't resolve reference to bean '" + refName +
"' in parent factory: no parent factory available");

}

bean = this.beanFactory.getParentBeanFactory().getBean(refName);

}

//从当前的容器中获取指定的引用 Bean 对象,如果指定的 Bean 没有被实例化

//则会递归触发引用 Bean 的初始化和依赖注入

else {

bean = this.beanFactory.getBean(refName);

//将当前实例化对象的依赖引用对象

this.beanFactory.registerDependentBean(refName, this.beanName);

}

if (bean instanceof NullBean) {

bean = null;

}

return bean;

}

catch (BeansException ex) {

throw new BeanCreationException(

this.beanDefinition.getResourceDescription(), this.beanName,

"Cannot resolve reference to bean '" + ref.getBeanName() + "' while setting " + argName, ex);

}

}


//解析 array 类型的属性

private Object resolveManagedArray(Object argName, List<?> ml, Class<?> elementType) { //创建一个指定类型的数组,用于存放和返回解析后的数组

Object resolved = Array.newInstance(elementType, ml.size()); for (int i = 0; i < ml.size(); i++) {
//递归解析 array 的每一个元素,并将解析后的值设置到 resolved 数组中,索引为 i Array.set(resolved, i,
resolveValueIfNecessary(new KeyedArgName(argName, i), ml.get(i)));

}

return resolved;

}

通过上面的代码分析,我们明白了 Spring 是如何将引用类型,内部类以及集合类型等属性进行解析的,属性值解析完成后就可以进行依赖注入了,依赖注入的过程就是 Bean 对象实例设置到它所依赖的 Bean 对象属性上去,在第 6 步中我们已经说过,依赖注入是通过 bw.setPropertyValues 方法实现的,该方法也使用了委托模式,在 BeanWrapper 接口中至少定义了方法声明,依赖注入的具体实现交由其实现类 BeanWrapperImpl 来完成,下面我们就分析依 BeanWrapperImpl 中赖注入相关的源码。

对Bean属性的依赖注入

BeanWrapperImpl 类主要是对容器中完成初始化的 Bean 实例对象进行属性的依赖注入,即把 Bean 对象设置到它所依赖的另一个 Bean 的属性中去。然而,BeanWrapperImpl 中的注入方法实际上由 AbstractNestablePropertyAccessor 来实现的,其相关源码如下:

//实现属性依赖注入功能

protected void setPropertyValue(PropertyTokenHolder tokens, PropertyValue pv) throws BeansException { if (tokens.keys != null) {
processKeyedProperty(tokens, pv);

}

else {

processLocalProperty(tokens, pv);

}

}


//实现属性依赖注入功能

@SuppressWarnings("unchecked")

private void processKeyedProperty(PropertyTokenHolder tokens, PropertyValue pv) { //调用属性的 getter(readerMethod)方法,获取属性的值

Object propValue = getPropertyHoldingValue(tokens); PropertyHandler ph = getLocalPropertyHandler(tokens.actualName); if (ph == null) {

throw new InvalidPropertyException(

getRootClass(), this.nestedPath + tokens.actualName, "No property handler found");

}

Assert.state(tokens.keys != null, "No token keys");

String lastKey = tokens.keys[tokens.keys.length - 1];


//注入 array 类型的属性值

if (propValue.getClass().isArray()) {

Class<?> requiredType = propValue.getClass().getComponentType(); int arrayIndex = Integer.parseInt(lastKey);
Object oldValue = null;
try {

if (isExtractOldValueForEditor() && arrayIndex < Array.getLength(propValue)) { oldValue = Array.get(propValue, arrayIndex);
}

Object convertedValue = convertIfNecessary(tokens.canonicalName, oldValue, pv.getValue(), requiredType, ph.nested(tokens.keys.length));
//获取集合类型属性的长度

int length = Array.getLength(propValue);

if (arrayIndex >= length && arrayIndex < this.autoGrowCollectionLimit) { Class<?> componentType = propValue.getClass().getComponentType(); Object newArray = Array.newInstance(componentType, arrayIndex + 1); System.arraycopy(propValue, 0, newArray, 0, length); setPropertyValue(tokens.actualName, newArray);

//调用属性的 getter(readerMethod)方法,获取属性的值

propValue = getPropertyValue(tokens.actualName);

}

//将属性的值赋值给数组中的元素

Array.set(propValue, arrayIndex, convertedValue);

}

catch (IndexOutOfBoundsException ex) {

throw new InvalidPropertyException(getRootClass(), this.nestedPath + tokens.canonicalName, "Invalid array index in property path '" + tokens.canonicalName + "'", ex);
}

}


//注入 list 类型的属性值

else if (propValue instanceof List) {

//获取 list 集合的类型

Class<?> requiredType = ph.getCollectionType(tokens.keys.length); List<Object> list = (List<Object>) propValue;
//获取 list 集合的 size

int index = Integer.parseInt(lastKey);

Object oldValue = null;

if (isExtractOldValueForEditor() && index < list.size()) { oldValue = list.get(index);
}

//获取 list 解析后的属性值

Object convertedValue = convertIfNecessary(tokens.canonicalName, oldValue, pv.getValue(), requiredType, ph.nested(tokens.keys.length));
int size = list.size();

//如果 list 的长度大于属性值的长度,则多余的元素赋值为 null

if (index >= size && index < this.autoGrowCollectionLimit) { for (int i = size; i < index; i++) {
try {

list.add(null);

}

catch (NullPointerException ex) {

throw new InvalidPropertyException(getRootClass(), this.nestedPath + tokens.canonicalName, "Cannot set element with index " + index + " in List of size " +
size + ", accessed using property path '" + tokens.canonicalName + "': List does not support filling up gaps with null elements");
}

}

list.add(convertedValue);

}

else {

try {

//将值添加到 list 中

list.set(index, convertedValue);

}

catch (IndexOutOfBoundsException ex) {

throw new InvalidPropertyException(getRootClass(), this.nestedPath + tokens.canonicalName, "Invalid list index in property path '" + tokens.canonicalName + "'", ex);
}

}

}


//注入 map 类型的属性值

else if (propValue instanceof Map) {

//获取 map 集合 key 的类型

Class<?> mapKeyType = ph.getMapKeyType(tokens.keys.length); //获取 map 集合 value 的类型

Class<?> mapValueType = ph.getMapValueType(tokens.keys.length); Map<Object, Object> map = (Map<Object, Object>) propValue; TypeDescriptor typeDescriptor = TypeDescriptor.valueOf(mapKeyType); //解析 map 类型属性 key 值

Object convertedMapKey = convertIfNecessary(null, null, lastKey, mapKeyType, typeDescriptor); Object oldValue = null;
if (isExtractOldValueForEditor()) {

oldValue = map.get(convertedMapKey);

}

//解析 map 类型属性 value 值

Object convertedMapValue = convertIfNecessary(tokens.canonicalName, oldValue, pv.getValue(), mapValueType, ph.nested(tokens.keys.length));
//将解析后的 key 和 value 值赋值给 map 集合属性

map.put(convertedMapKey, convertedMapValue);

}
else {

throw new InvalidPropertyException(getRootClass(), this.nestedPath + tokens.canonicalName, "Property referenced in indexed property path '" + tokens.canonicalName +
"' is neither an array nor a List nor a Map; returned value was [" + propValue + "]");

}

}


private Object getPropertyHoldingValue(PropertyTokenHolder tokens) { Assert.state(tokens.keys != null, "No token keys");
PropertyTokenHolder getterTokens = new PropertyTokenHolder(tokens.actualName); getterTokens.canonicalName = tokens.canonicalName; getterTokens.keys = new String[tokens.keys.length - 1];

System.arraycopy(tokens.keys, 0, getterTokens.keys, 0, tokens.keys.length - 1);


Object propValue;

try {

//获取属性值

propValue = getPropertyValue(getterTokens);

}

catch (NotReadablePropertyException ex) {

throw new NotWritablePropertyException(getRootClass(), this.nestedPath + tokens.canonicalName, "Cannot access indexed value in property referenced " +
"in indexed property path '" + tokens.canonicalName + "'", ex);

}


if (propValue == null) {

if (isAutoGrowNestedPaths()) {

int lastKeyIndex = tokens.canonicalName.lastIndexOf('[');

getterTokens.canonicalName = tokens.canonicalName.substring(0, lastKeyIndex); propValue = setDefaultValue(getterTokens);
}

else {

throw new NullValueInNestedPathException(getRootClass(), this.nestedPath + tokens.canonicalName, "Cannot access indexed value in property referenced " +
"in indexed property path '" + tokens.canonicalName + "': returned null");

}

}

return propValue;

}

通过对上面注入依赖代码的分析,我们已经明白了 Spring IOC 容器是如何将属性的值注入到 Bean 实例对象中去的:

(1).对于集合类型的属性,将其属性值解析为目标类型的集合后直接赋值给属性。
(2).对于非集合类型的属性,大量使用了 JDK 的反射和内省机制,通过属性的 getter 方法(reader Method)获取指定属性注入以前的值,同时调用属性的 setter 方法(writer Method)为属性设置注入后的值。看到这里相信很多人都明白了 Spring 的 setter 注入原理。
SSM源码分析之Spring04-DI实现原理(基于XML注入)_实例化_02

总结

至此 Spring IOC 容器对 Bean 定义资源文件的定位,载入、解析和依赖注入已经全部分析完毕,现在 Spring IOC 容器中管理了一系列靠依赖关系联系起来的 Bean,程序不需要应用自己手动创建所需的对象,Spring IOC 容器会在我们使用的时候自动为我们创建,并且为我们注入好相关的依赖,这就是 Spring 核心功能的控制反转和依赖注入的相关功能。