题意:

每个' . '有一个姑娘, E是出口,'.'是空地 , 'X‘ 是墙。

每秒钟每个姑娘可以走一步(上下左右)

每秒钟每个出口只能出去一个人

给定n*m的地图, 时限T

问所有姑娘能否在T秒内逃生,若能输出最小值,不能输出"impossible"

思路:

显然是二分答案+网络流判可行。

因为每个出口每秒钟只能出去一个人,那么就把每个出口按时间拆点,则T秒钟就拆成T个点。


网络流建图

1、源点 到 每个姑娘 建流量为1的边。

2、若某姑娘到 a出口需要时间为 t秒,则建一条流量为1的边 连向a出口拆点为t秒的点。

3、每个出口的所有拆点向汇点连一条流量为1的边。

4、对于每个出口u的x秒拆点,向u的x+1秒的拆点连一条流量为inf的边(表示从x秒来的人如果x秒还从u出不去,可以在u等到x+1秒出去)


二分一下 第二点中的 t 秒(即答案),判断最大流是否等于人数


二分匹配建图:

枚举时间(因为时间最大只有12*12)

在原图的基础上加上下面的边:

在i时间内若能出去则那姑娘向所有能出去的 出口时间拆点连边。

再在原来的匹配上继续增广,累计最大匹配数。

当最大匹配数==人数时则是最小的时间。


数据较水可以用点非主流的建图卡过去,估计只有30组数据。


网络流代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;

#define ll int 

#define N 20050
#define M 105000
#define inf 10737418
struct Edge{  
	ll from, to, cap, nex;  
}edge[M*4];//注意这个一定要够大 不然会re 还有反向弧  

ll head[N], edgenum;  
void add(ll u, ll v, ll cap){  
	Edge E = { u, v, cap, head[u]};  
	edge[ edgenum ] = E;  
	head[u] = edgenum ++;

	Edge E2= { v, u, 0,   head[v]};  
	edge[ edgenum ] = E2;  
	head[v] = edgenum ++;  
}  
ll sign[N];  
bool BFS(ll from, ll to){  
	memset(sign, -1, sizeof(sign));  
	sign[from] = 0;  

	queue<ll>q;  
	q.push(from);  
	while( !q.empty() ){  
		int u = q.front(); q.pop();  
		for(ll i = head[u]; i!=-1; i = edge[i].nex)  
		{  
			ll v = edge[i].to;  
			if(sign[v]==-1 && edge[i].cap)  
			{  
				sign[v] = sign[u] + 1, q.push(v);  
				if(sign[to] != -1)return true;  
			}  
		}  
	}  
	return false;  
}  
ll Stack[N], top, cur[N];  
ll dinic(ll from, ll to){
	ll ans = 0;  
	while( BFS(from, to) )  
	{  
		memcpy(cur, head, sizeof(head));  
		ll u = from;      top = 0;  
		while(1)  
		{  
			if(u == to)  
			{  
				ll flow = inf, loc;//loc 表示 Stack 中 cap 最小的边  
				for(ll i = 0; i < top; i++)  
					if(flow > edge[ Stack[i] ].cap)  
					{  
						flow = edge[Stack[i]].cap;  
						loc = i;  
					}  

					for(ll i = 0; i < top; i++)  
					{  
						edge[ Stack[i] ].cap -= flow;  
						edge[Stack[i]^1].cap += flow;  
					}  
					ans += flow;  
					top = loc;  
					u = edge[Stack[top]].from;  
			}  
			for(ll i = cur[u]; i!=-1; cur[u] = i = edge[i].nex)//cur[u] 表示u所在能增广的边的下标  
				if(edge[i].cap && (sign[u] + 1 == sign[ edge[i].to ]))break;  
			if(cur[u] != -1)  
			{  
				Stack[top++] = cur[u];  
				u = edge[ cur[u] ].to;  
			}  
			else  
			{  
				if( top == 0 )break;  
				sign[u] = -1;  
				u = edge[ Stack[--top] ].from;  
			}  
		}  
	}  
	return ans;  
}  

void init(){memset(head,-1,sizeof head);edgenum = 0;}

char mp[15][15];
int n, m, T;
int Hash(int x,int y){return x*m+y;}

vector<int>E,P;
int dis[150][150], step[4][2]={1,0,-1,0,0,1,0,-1};
bool vis[150][150];
void bfs(int sx,int sy){
	int start = Hash(sx,sy);
	memset(vis, 0, sizeof vis);
	vis[sx][sy] = 1;
	dis[start][start] = 0;
	queue<int>qx,qy;	while(!qx.empty())qx.pop(); while(!qy.empty())qy.pop();
	qx.push(sx), qy.push(sy);
	while(!qx.empty()){
		int x = qx.front(), y = qy.front();
		qx.pop(); qy.pop();
		for(int i = 0; i < 4; i++){
			int dx = x + step[i][0], dy = y + step[i][1];
			if(!(0<=dx&&dx<n&&0<=dy&&dy<m))continue;
			if(vis[dx][dy] || mp[dx][dy]!='.')continue;
			vis[dx][dy] = 1;
			dis[Hash(dx,dy)][start] = dis[start][Hash(dx,dy)] = dis[start][Hash(x,y)]+1;
			qx.push(dx); qy.push(dy);
		}
	}
}
bool ok(int TIME){
	init();
	int from = N-2, to = N-1;
	for(int i = 0; i < P.size(); i++)add(from, P[i], 1);
	for(int i = 0; i < P.size(); i++)
	{
		for(int j = 0; j < E.size(); j++)
			if(dis[P[i]][E[j]]<=TIME)	add(P[i],j*150+150+dis[P[i]][E[j]],1);
	}
	for(int i = 0; i < E.size(); i++)
		for(int j = 1; j <= TIME; j++) 
		{
			add(i*150+150+j, to, 1);
			if(j!=TIME)
				add(i*150+150+j,i*150+150+j+1,inf);
		}
	return dinic(from,to)==P.size();
}
int main(){
	//freopen("date.in","r+",stdin);
	//freopen("ans.out","w+",stdout);

	int i, j;
	while(~scanf("%d %d %d",&n,&m,&T)){
		E.clear(); P.clear();
		memset(dis, 0, sizeof dis);
		memset(mp, 0, sizeof mp);
		for(i=0;i<n;i++)scanf("%s",mp[i]);
		

		for(i=0;i<n;i++)for(j=0;j<m;j++)
		{
			if(mp[i][j]=='E')E.push_back(Hash(i,j));
			else if(mp[i][j]=='.')P.push_back(Hash(i,j));
		}
		if(P.size()==0){puts("0");continue;}	if(E.size()==0){puts("impossible");continue;}

		for(i = 0; i < E.size(); i++)bfs(E[i]/m, E[i]%m);
		int l = 1, r = 256, ans = inf;
		while(l<=r)
		{
			int mid = (l+r)>>1;
			if(ok(mid))ans = min(ans, mid), r = mid-1;
			else l = mid+1;
		}
		if(T<ans || ans==inf){puts("impossible");continue;}
		else printf("%d\n",ans);
	}
	return 0;
}
/*
6 12 100000
......E....E
E.EEE...E...
...E....EE..
.E.E.......E
.....E......
.E...E...EE.
11 3 100000
X..
...
.E.
EE.
E.E
...
...
.E.
E..
..E
E..
7 6 100000
.E..E.
...E..
......
...E.E
...X..
...EE.
....E.
11 10 100000
.E........
......E...
........E.
EE....E..E
...E...E..
......XE.E
..........
.........X
.........E
.EE.......
..EE.E.E.E
7 3 100000
...
..E
...
..X
EE.
...
.X.
3 2 100000
..
..
EE
6 7 100000
..E....
.......
.....E.
...EE..
.......
.......
6 8 100000
..EEEE..
...E....
........
........
.......E
E......E

10 8 100000
E.E..X..
........
E...E...
E..E....
........
.....E..
......EX
........
.E......
..E..EE.

5 5 100
.....
XXXXX
EEEEE
.....
XXXXX

1 1 1
E

1 1 1
P
1 1 1
X

2 2 1
E.
.X

2 2 2
E.
.X

8 1 1000
.
E
.
.
.
.
.
.

3 4 100
E...
....
...E

3 4 100
E...
.E..
...E

4 5 100
E....
.E...
...E.
.....

4 5 100
.....
.E...
.....
.....

12 12 10000000
...E.....E.E
E.E.E.....E.
.......E....
............
......E.....
............
...E.....E.E
E.E.E.....E.
.......E....
............
......E.....
............

12 12 6
...E.....E.E
E.E.E.....E.
.......E....
............
......E.....
............
...E.....E.E
E.E.E.....E.
.......E....
............
......E.....
............

12 12 10000000
E...........
............
............
............
............
............
............
............
............
............
............
............

12 12 10000000
E...........
............
............
............
............
.....E......
............
............
............
............
............
...........E

3 3 10
...
.E.
...

*/
二分匹配代码:

#include <set>
#include <map>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;

/* '0. Macros, Preprocessers, */
#pragma comment(linker, "/STACK:102400000,102400000")
#ifdef _WIN32
typedef __int64 int64;
#define OD(_TYPE) printf("%I64d\n", _TYPE)
#define ODC(_CASE, _TYPE) printf("Case %d: %I64d\n", _CASE++, _TYPE);
#else
typedef long long int64;
#define OD(_TYPE) printf("%lld\n", _TYPE)
#define ODC(_CASE, _TYPE) printf("Case %d: %lld\n", _CASE++, _TYPE);
#endif
#define LSON l,mid,id<<1
#define RSON mid+1,r,id<<1|1
#define MM (l+r)>>1

/* '1. Constants, */
const double EPS = 1e-8;
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;

/* '2. Coding Area, */
const int N = 15;
const int M = 205;
const int dir[4][2] = { { -1, 0 }, { 0, 1 }, { 1, 0 }, { 0, -1 } };
struct STATE {
    int x, y, t;
    STATE() { }
    STATE(int x, int y, int t) : x(x), y(y), t(t) { }
};
int uN, vN;
vector<int> g[M];
int linker[M * M];  // 每个v对应的u匹配
bool used[M * M];
char mp[N][N];
int dis[M][M];  // 每个女孩到出口的最短时间
bool vis[N][N];  // 访问过或没有
int r, c, T;
int gid, eid;
map<pair<int, int>, int> mpg, mpe;  // 每个点的编号

bool dfs(int u) {
    for (unsigned int i = 0; i < g[u].size(); i++) {
        int v = g[u][i];
        if (used[v]) continue;
        used[v] = true;
        if (linker[v] == -1 || dfs(linker[v])) {
            linker[v] = u;
            return true;
        }
    }
    return false;
}

int hungary() {
    int res = 0;
    memset(linker, -1, sizeof(linker));
    for (int u = 0; u < uN; u++) {
        memset(used, 0, sizeof(used));
        if (dfs(u))
            ++res;
    }
    return res;
}

void bfs(int x, int y) {
    queue<STATE> q;
    int eid = mpe[make_pair(x, y)];
    memset(vis, 0, sizeof(vis));
    vis[x][y] = 1;
    q.push(STATE(x, y, 0));
    while (!q.empty()) {
        STATE now = q.front();
        q.pop();
        for (int i = 0; i < 4; i++) {
            int dx = now.x + dir[i][0];
            int dy = now.y + dir[i][1];
            if (dx >= 0 && dx < r && dy >= 0 && dy < c) {
                if (mp[dx][dy] != '.') continue;
                if (vis[dx][dy]) continue;
                int gid = mpg[make_pair(dx, dy)];
                q.push(STATE(dx, dy, now.t + 1));
                dis[gid][eid] = now.t + 1;
                vis[dx][dy] = 1;
            }
        }
    }
}

bool build_and_run(int limit) {
    for (int i = 0; i < M; i++) g[i].clear();
    uN = gid, vN = eid * limit;
    for (int i = 0; i < gid; i++) {
        for (int j = 0; j < eid; j++) {
            for (int k = dis[i][j]; k <= limit; k++) {
                g[i].push_back(j * limit + k);
            }
        }
    }
    int ans = hungary();
    if (ans >= gid) return true;
    return false;
}

void gao() {
    gid = eid = 0;
    mpg.clear(); mpe.clear();
    memset(dis, 0x3f, sizeof(dis));
    for (int i = 0; i < r; i++) {
        scanf("%s", mp[i]);
        for (int j = 0; j < c; j++) {
            if (mp[i][j] == 'E') mpe[make_pair(i, j)] = eid++;
            if (mp[i][j] == '.') mpg[make_pair(i, j)] = gid++;
        }
    }

    for (int i = 0; i < r; i++) {
        for (int j = 0; j < c; j++) {
            if (mp[i][j] == 'E') {
                bfs(i, j);
            }
        }
    }

    int L = 1, R = 256, ans = INF;
    while (L <= R) {
        int mid = (L + R) >> 1;
        if (build_and_run(mid)) {
            ans = mid;
            R = mid - 1;
        } else {
            L = mid + 1;
        }
    }
    if (ans == INF || ans > T) {
        printf("impossible\n");
    } else {
        printf("%d\n", ans);
    }
}

int main() {
    while (~scanf("%d%d%d", &r, &c, &T)) {
        memset(g, 0, sizeof(g));
        gao();
    }
    return 0;
}