题目链接:点击打开链接
题意:
给定n个点,m个询问的无向树(1为根)
下面n个数表示每个点的权值
下面n-1行给出树
操作1:x点权值+v, x的第 i & 1 的儿子-v, 第 !(i&1) 的儿子+v
操作2:询问x点权值
dfs把树转成序列
根据深度把点分成2组
分别用线段树维护。。
然后Y一下
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
#define ll __int64
#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define N 201000
ll n ,m;
inline ll Mid(ll a,ll b){return (a+b)>>1;}
struct Edge{
ll from, to, nex;
}edge[N<<1];
ll head[N], edgenum;
void add(ll u,ll v){
Edge E = {u,v,head[u]};
edge[edgenum] = E;
head[u] = edgenum++;
}
ll in[N], out[N], fa[N], Time, dep[N], V[N];
void dfs(ll u, ll father, ll deep){
fa[u] = father;
dep[u] = deep;
in[u] = ++Time;
for(ll i = head[u];~i; i = edge[i].nex){
ll v = edge[i].to; if(v==father)continue;
dfs(v,u,deep+1);
}
out[u] = Time;
}
struct node{
struct E{
ll l, r, val, lazy;
}t[N<<2];
void push_down(ll id){
if(t[id].l==t[id].r || t[id].lazy == 0)return ;
t[L(id)].val += t[id].lazy;
t[R(id)].val += t[id].lazy;
t[L(id)].lazy+=t[id].lazy;
t[R(id)].lazy+=t[id].lazy;
t[id].lazy = 0;
}
void build(ll l, ll r, ll id){
t[id].l = l; t[id].r = r;
t[id].val = 0;
t[id].lazy = 0;
if(l==r)return;
ll mid = Mid(l,r);
build(l,mid,L(id));build(mid+1,r,R(id));
}
void update(ll l, ll r,ll val,ll id){
push_down(id);
if(l == t[id].l && t[id].r == r) { t[id].val += val; t[id].lazy = val; return ;}
ll mid = Mid(t[id].l, t[id].r);
if(mid<l)update(l,r,val,R(id));
else if(r<=mid)update(l,r,val,L(id));
else {
update(l,mid,val,L(id));
update(mid+1,r,val,R(id));
}
}
ll query(ll l, ll r, ll id){
push_down(id);
if(l == t[id].l && t[id].r == r)return t[id].val;
ll mid = Mid(t[id].l, t[id].r);
if(mid<l)return query(l,r,R(id));
else if(r<=mid)return query(l,r,L(id));
return query(l,mid,L(id))+query(mid+1,r,R(id));
}
}tree[2];
ll query(ll u){
ll ans = tree[dep[u]&1].query(in[u],in[u],1);
return ans;
}
void init(){Time = 0; memset(head, -1, sizeof head); edgenum = 0;}
int main(){
ll i, j, u, v;
while(cin>>n>>m) {
init();
for(i=1;i<=n;i++)cin>>V[i];
for(i=1;i<n;i++){
cin>>u>>v;
add(u,v);
add(v,u);
}
dfs(1,-1,1);
tree[0].build(1,n,1);
tree[1].build(1,n,1);
while(m--){
cin>>u;
if(u==1) {
cin>>u>>v;
tree[dep[u]&1].update(in[u],out[u],v,1);
if(in[u]<out[u])
tree[!(dep[u]&1)].update(in[u]+1,out[u],-v,1);
}
else {
cin>>u;
cout<<query(u)+V[u]<<endl;
}
}
}
return 0;
}