B:

Uva: 12582 - Wedding of Sultan

给定一个字符串(仅由大写字母构成)一个字母表示一个地点,经过这个点或离开这个点都输出这个地点的字母)
问:
每个地点经过的次数(维护一个栈就可以了,注意进入起点和离开起点都不算入起点的次数)

#include<cstdio>
#include<cstring>
#include<stack>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 105;
int b[N];
char a[N];
stack<char> s;
void work() {
	memset(b, 0, sizeof b);
	while(s.size()) s.pop();
	int n = strlen(a);
	s.push(a[0]);
	for(int i = 1; i < n; i ++) {
		b[s.top() - 'A'] ++;
		if(s.top() == a[i]) {
			s.pop();
		} else {
			s.push(a[i]);
		}
	}
	b[a[0]-'A'] --;
	
	for(int i = 0; i < 26; i ++) {
		if(b[i] > 0) {
			printf("%c = %d\n", i+'A', b[i]);
		}
	}
}
int main() {
    int T, cas = 0;
	scanf("%d", &T);
    while(T-- > 0) {
		scanf("%s", a);
        printf("Case %d\n", ++cas);
        work();
    }
    return 0;
}

C:

Uva: 12583 - Memory Overflow

有n天,常数k,n长的字符串
每天有一个字母来拜访主角,主角只能记住最后k天的字母,问主角能辨认出几个字母
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <bits/stdc++.h>
template <class T>
inline bool rd(T &ret) {
	char c; int sgn;
	if (c = getchar(), c == EOF) return 0;
	while (c != '-' && (c<'0' || c>'9')) c = getchar();
	sgn = (c == '-') ? -1 : 1;
	ret = (c == '-') ? 0 : (c - '0');
	while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
	ret *= sgn;
	return 1;
}
template <class T>
inline void pt(T x) {
	if (x <0) {
		putchar('-');
		x = -x;
	}
	if (x>9) pt(x / 10);
	putchar(x % 10 + '0');
}
using namespace std;
const int N = 1000;
typedef long long ll;
int n, k;
int cnt[N];
char s[N];
int work(){
    if(k == 0) return 0;
    queue<char> q;
    memset(cnt, 0, sizeof cnt);
    int ans = 0;
    for(int i = 0; s[i]; i++){
        if(cnt[s[i]])
            ans++;

        if((int)q.size() == k)
        {
            cnt[q.front()]--;
            q.pop();
        }
        q.push(s[i]);
        cnt[s[i]]++;
    }
    return ans;
}
int main(){
    int T, Cas = 1; rd(T);
    while (T--){
        rd(n); rd(k); scanf("%s", s);
        int ans = work();
        printf("Case %d: %d\n", Cas++, ans);
	}
	return 0;
}

D:

Uva: 12584 - Laptop Chargers

题意:

有n台笔记本 q个询问

chps 表示一台充电器每个单位时间能充的电量(一台笔记本只有一个充电器插口)

下面n行

每行3个参数表示笔记本的属性:电池容量,满电到用完需要的时间,当前电量。

若所有笔记本能同时不间断运行10w 秒以上就称能永久运行,输出-1

输入q行,每行一个询问表示给定的充电器数量

问:

先输出一个数字表示让所有笔记本同时永久运行最少需要的充电器数量。

下面q行表示在给定的充电器数量下所有笔记本同时运行的最长时间是多少

思路:

我们总是能宏观地对待所有笔记本(YY得证)

所以我们只要关心单位时间的总耗电量和总充电量即可。

直接计算时间似乎有精度误差,改成二分时间就过了

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <bits/stdc++.h>
template <class T>
inline bool rd(T &ret) {
	char c; int sgn;
	if (c = getchar(), c == EOF) return 0;
	while (c != '-' && (c<'0' || c>'9')) c = getchar();
	sgn = (c == '-') ? -1 : 1;
	ret = (c == '-') ? 0 : (c - '0');
	while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
	ret *= sgn;
	return 1;
}
template <class T>
inline void pt(T x) {
	if (x <0) {
		putchar('-');
		x = -x;
	}
	if (x>9) pt(x / 10);
	putchar(x % 10 + '0');
}
using namespace std;
typedef long long ll;
const int N = 105;
const double eps = 1e-5;
struct node{
    double full, tim, now, v, la;
}a[N];
int n, q;
double chps, out, in, all;
double cal(int m){
	double l = 0, r = 100005;
	while(r-l >= eps) {
		double mid = (l + r) / 2;
		double sv = 0, sum = 0;
		for(int i = 1; i <= n; i ++) {
			if(a[i].la < mid) {
				sv += a[i].v;
				sum += a[i].now;
			}
		}
		if(m*chps >= sv) l = mid;
		else {
			if(sum / (sv - m*chps) >= mid) l = mid;
			else r = mid;
		}
	}
	return l;
}
void input(){
    rd(chps);
    all = 0;
    out = 0;
    for(int i = 1; i <= n; i++) {
        rd(a[i].full); rd(a[i].tim); rd(a[i].now);
        a[i].v = (double)a[i].full / a[i].tim;
        a[i].la = a[i].now / a[i].v;
        out += a[i].v;
    }
}
int main(){
    int Cas = 1;
    while(cin>>n>>q, n+q){
        input();
        printf("Case %d:\n", Cas++);
		int ans = 0;
		while(ans*chps < out) ans ++;
        cout<<ans<<endl;
        while(q-- > 0) {
            int u; rd(u);
            double ans = cal(u);
            if(ans > 100000)puts("-1.000");
            else printf("%.3f\n", ans);
        }
	}
	return 0;
}


E:

Uva: 12585 - Poker End Games

有2个人X,Y,每个人手里有纸牌对应a 和 b张
每局游戏有0.5概率 X 获得Y手中 min(a,b)张
0.5概率 Y获得X手中 min(a,b)张
若有人手里没有牌则另一个人胜利。
问获胜需要的场数的期望 和 X获胜的概率
思路:
爆搜一下
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
double E, P;
void dfs(int n, int m, int t) {
	if(t > 50) return ;
	
	if(n == 0 || m == 0) {
		double p = 1;
		for(int i = 0; i < t; i ++) {
			p *= 0.5;
		}
		E += t*p;
		if(n != 0) P += p;
	} else {
		dfs(n-min(n, m), m+min(n, m), t+1);
		dfs(n+min(n, m), m-min(n, m), t+1);
	}
}
int main() {
    int T, cas = 0;
	scanf("%d", &T);
    while(T-- > 0) {
    	int n, m;
		scanf("%d%d", &n, &m);
		E = 0.0, P = 0.0;
		dfs(n, m, 0);
        printf("Case %d: %.6f %.6f\n", ++cas, E, P);
    }
    return 0;
}

F:

UVA: 12586 - Overlapping Characters


大模拟,写写写

#include<cstdio>
#include<cstring>
#include<stack>
#include<iostream>
#include<map>
#include<algorithm>
using namespace std;
const int N = 50;
const int r = 17;
const int c = 43;
struct node {
	char s[r][c];
};

map<char, node> dic;
int n, q, len;
int vis[r][c];
char ok[N], s[N];

void pu() {
	for (int i = 0; i < len; ++i)
		ok[i] = 'N';
	memset(vis, -1, sizeof vis);
			
	for (int i = 0; i < len; ++i)
		for (int j = 0; j < r; ++j)
			for (int k = 0; k < c; ++k)
				if (dic[s[i]].s[j][k] == '*') {
					if (vis[j][k] == -1)
						vis[j][k] = i;
					else
						vis[j][k] = -2;
				}

	for (int i = 0; i < r; ++i)
		for (int j = 0; j < c; ++j)
			if (vis[i][j] >= 0)
				ok[vis[i][j]] = 'Y';
}
void work() {
	node in;
	dic.clear();
	scanf("%s", s);
	len = strlen(s);
	for (int i = 0; i < len; ++i) {
		for (int j = 0; j < 17; ++j)
			scanf("%s", in.s[j]);
		dic[s[i]] = in;
	}
	for (int i = 1; i <= q; ++i) {
		scanf("%s", s);
		len = strlen(s);
		printf("Query %d: ", i);
		pu();
		for (int j = 0; j < len; ++j)
			putchar(ok[j]);
		putchar('\n');
	}
}
int main() {
	while (~scanf("%d%d", &n, &q))
		work();
	return 0;
}

G:

Uva: 12587 - Reduce the Maintenance Cost

==写死爹了
题解: 点击打开链接

I:

Uva: 12589 - Learning Vector

题意:给定n个向量,选k个向量,
使得向量围成的面积最大。
思路:
设我们在 向量a, b 之中选一个。
则得到一个方程表示2个向量各自增加的面积
化简后就能排个序。
#include<cstdio>
#include<cstring>
#include<stack>
#include<iostream>
#include<algorithm>
using namespace std;
const int Inf = 1e9;
const int H = 2500+2;
const int N = 50+2;
struct node {
	int w, h;
};

int T = 0, d[N][N][H];
node a[N];
bool cc(const node& i, const node& j) {
	return i.h*j.w>= j.h*i.w;
}
void work() {
	int n, K, mxh = 0, s = 0;
	scanf("%d%d", &n, &K);
	for (int i=0; i<n; ++i) {
		scanf("%d%d", &a[i].w, &a[i].h);
		s += a[i].h;
	}
	sort(a, a + n, cc);
	for (int i = 0; i <= n; ++i)
		for (int j = 0; j <= K; ++j)
			for (int k = 0; k <= s; ++k)
				d[i][j][k] = -Inf;
	d[0][0][0] = 0;
	for (int i = 0; i < n; ++i)
		for (int j = 0; j <= i && j <= K; ++j)
		for (int k = 0; k <= mxh; ++k)
			if (d[i][j][k] >= 0) {
				d[i+1][j][k] = max(d[i+1][j][k], d[i][j][k]);
				if (j+1 <= K) {
					d[i+1][j+1][k+a[i].h] = max(d[i+1][j+1][k+a[i].h], d[i][j][k] + a[i].w*k*2 + a[i].h*a[i].w);
					mxh = max(mxh, k+a[i].h);
				}
			}
	int ans = 0;
	for (int i = 0; i <= mxh; ++i)
		ans = max(ans, d[n][K][i]);
	printf("Case %d: %d\n", ++T, ans);
}
int main() {
	int cas;
	scanf("%d", &cas);
	while (cas-->0)
		work();
	return 0;
}