二、部分源代码

%_________________________________________________________________________%
% 鸽群优化算法 %
%_________________________________________________________________________%

% 使用方法
%__________________________________________
% fobj = @YourCostFunction 设定适应度函数
% dim = number of your variables 设定维度
% Max_iteration = maximum number of generations 设定最大迭代次数
% SearchAgents_no = number of search agents 种群数量
% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n 变量下边界
% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n 变量上边界
% If all the variables have equal lower bound you can just
% define lb and ub as two single number numbers

% To run PIO: [Best_pos,Best_score,curve]=PIO(pop,Max_iter,lb,ub,dim,fobj)
%__________________________________________

clear all
clc
% rng('default');
SearchAgents_no=50; % Number of search agents 种群数量

Function_name='F9'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper) 设定适应度函数

Max_iteration=1000; % Maximum numbef of iterations 设定最大迭代次数

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name); %设定边界以及优化函数

[Best_score,Best_pos,PIO_curve]=PIO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); %开始优化
% This function containts full information and implementations of the benchmark
% lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]
% up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]
% dim is the number of variables (dimension of the problem)

function [lb,ub,dim,fobj] = Get_Functions_details(F)


switch F
case 'F1'
fobj = @F1;
lb=-100;
ub=100;
dim=30;

case 'F2'
fobj = @F2;
lb=-10;
ub=10;
dim=30;

case 'F3'
fobj = @F3;
lb=-100;
ub=100;
dim=30;

case 'F4'
fobj = @F4;
lb=-100;
ub=100;
dim=30;

case 'F5'
fobj = @F5;
lb=-30;
ub=30;
dim=30;

case 'F6'
fobj = @F6;
lb=-100;
ub=100;
dim=30;

case 'F7'
fobj = @F7;
lb=-1.28;
ub=1.28;
dim=30;

case 'F8'
fobj = @F8;
lb=-500;
ub=500;
dim=30;

case 'F9'
fobj = @F9;
lb=-5.12;
ub=5.12;
dim=30;

case 'F10'
fobj = @F10;
lb=-32;
ub=32;
dim=30;

case 'F11'
fobj = @F11;
lb=-600;
ub=600;
dim=30;

case 'F12'
fobj = @F12;
lb=-50;
ub=50;
dim=30;

case 'F13'
fobj = @F13;
lb=-50;
ub=50;
dim=30;

case 'F14'
fobj = @F14;
lb=-65.536;
ub=65.536;
dim=2;

case 'F15'
fobj = @F15;
lb=-5;
ub=5;
dim=4;

case 'F16'
fobj = @F16;
lb=-5;
ub=5;
dim=2;

case 'F17'
fobj = @F17;
lb=[-5,0];
ub=[10,15];
dim=2;

case 'F18'
fobj = @F18;
lb=-2;
ub=2;
dim=2;

case 'F19'
fobj = @F19;
lb=0;
ub=1;
dim=3;

case 'F20'
fobj = @F20;
lb=0;
ub=1;
dim=6;

case 'F21'
fobj = @F21;
lb=0;
ub=10;
dim=4;

case 'F22'
fobj = @F22;
lb=0;
ub=10;
dim=4;

case 'F23'
fobj = @F23;
lb=0;
ub=10;
dim=4;
end

end

三、运行结果

【优化算法】鸽群优化算法(PIO)【含Matlab源码 1077期】_算法

四、matlab版本及参考文献

1 matlab版本

2014a

2 参考文献

[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.

[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.