Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3588 Accepted Submission(s): 976
Tonyfang think this sequence is messy, so he will count the number of inversions in this sequence. Because he is angry, you will have to pay x yuan for every inversion in the sequence.
You don't want to pay too much, so you can try to play some tricks before he sees this sequence. You can pay y yuan to swap any two adjacent elements.
What is the minimum amount of money you need to spend?
The definition of inversion in this problem is pair (i,j) which 1≤i<j≤n and ai>aj.
For each test, in the first line, three integers, n,x,y, n represents the length of the sequence.
In the second line, n integers separated by spaces, representing the orginal sequence a.
1≤n,x,y≤100000, numbers in the sequence are in [−109,109]. There're 10 test cases.
题意:每次交换会花费y的费用,有一个逆序对的会花费x的费用,求最小的费用
题解:找出逆序对的个数,然后求出最小费用即可
逆序对的个数可以用归并排序时的交换次数表示
那么我们只需要在归并排序的时候得到交换次数即可
代码如下:
#include <map> #include <set> #include <cmath> #include <ctime> #include <stack> #include <queue> #include <cstdio> #include <cctype> #include <bitset> #include <string> #include <vector> #include <cstring> #include <iostream> #include <algorithm> #include <functional> #define fuck(x) cout<<"["<<x<<"]"; #define FIN freopen("input.txt","r",stdin); #define FOUT freopen("output.txt","w+",stdout); #pragma comment(linker, "/STACK:102400000,102400000") using namespace std; typedef long long LL; typedef pair<int, int> PII; const int maxn = 1e5+5; int a[maxn]; int c[maxn]; long long ans=0; void Msort(int l,int r){ int mid=(l+r)/2; int i,j,tmp; if(r>l){ Msort(l,mid); Msort(mid+1,r); tmp=l; for(i=l,j=mid+1;i<=mid&&j<=r; ){ if(a[i]>a[j]){ c[tmp++]=a[j++]; ans+=mid-i+1; }else{ c[tmp++]=a[i++]; } } if(i<=mid) for(;i<=mid;) c[tmp++]=a[i++]; if(j<=r) for(;j<=r;) c[tmp++]=a[j++]; for(i=l;i<=r;i++) a[i]=c[i]; } } int main(){ int n,x,y,t; while(scanf("%d%d%d",&n,&x,&y) !=EOF){ ans=0; for(int i=0;i<n;i++){ scanf("%d",&a[i]); } Msort(0,n-1); for(int i) long long ans1=min(x,y)*ans; printf("%lld\n",ans1); } return 0; }