还有一条小径是基于最大熵原理的,物理学家E.T.Jaynes在最大熵原理上有非常重要的贡献,他在《概率论沉思录》里面对这个方法有描述和证明,没有提到发现者,不过难以确认这条道的发现者是否是Jaynes本人。
熵在物理学中由来已久,信息论的创始人香农(Claude Elwood Shannon)把这个概念引入了信息论,读者中很多人可能都知道目前机器学习中有一个非常好用的分类算法叫最大熵分类器。要想把熵和最大熵的来龙去脉说清楚可不容易,不过这条道的风景是相当独特的,E.T.Jaynes对这条道也是偏爱有加。
对于一个概率分布,我们定义它的熵为:
E.T.Jaynes显然对正态分布具有这样的性质极为赞赏,因为这从信息论的角度证明了正态分布的优良性。而我们可以看到,正态分布熵的大小,取决于方差的大小。这也容易理解,因为正态分布的均值和密度函数的形状无关,正态分布的形状是由其方差决定的,而熵的大小反应概率分布中的信息量,显然和密度函数的形状相关。
所谓横看成岭侧成峰,远近高低各不同,正态分布给人们提供了多种欣赏角度和想象空间。法国菩萨级别的大数学家庞加莱对正态分布说过一段有意思的话,引用来作为这个小节的结束:
Physicists believe that the Gaussian law has been proved in mathematics while mathematicians think that it was experimentally established in physics.
—Henri Poincaré