经典CNN网络结构

Le-Net5 网络结构

def inference(input_tensor,train,regularizer):

    #第一层:卷积层,过滤器的尺寸为5×5,深度为6,不使用全0补充,步长为1。
    #尺寸变化:32×32×1->28×28×6
    with tf.variable_scope('layer1-conv1'):
        conv1_weights = tf.get_variable('weight',[5,5,1,6],initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv1_biases = tf.get_variable('bias',[6],initializer=tf.constant_initializer(0.0))
        conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='VALID')
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))

    #第二层:池化层,过滤器的尺寸为2×2,使用全0补充,步长为2。
    #尺寸变化:28×28×6->14×14×6
    with tf.name_scope('layer2-pool1'):
        pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

    #第三层:卷积层,过滤器的尺寸为5×5,深度为16,不使用全0补充,步长为1。
    #尺寸变化:14×14×6->10×10×16
    with tf.variable_scope('layer3-conv2'):
        conv2_weights = tf.get_variable('weight',[5,5,6,16],initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv2_biases = tf.get_variable('bias',[16],initializer=tf.constant_initializer(0.0))
        conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='VALID')
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))

    #第四层:池化层,过滤器的尺寸为2×2,使用全0补充,步长为2。
    #尺寸变化:10×10×16->5×5×16
    with tf.variable_scope('layer4-pool2'):
        pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

    #将第四层池化层的输出转化为第五层全连接层的输入格式。第四层的输出为5×5×16的矩阵,然而第五层全连接层需要的输入格式
    #为向量,所以我们需要把代表每张图片的尺寸为5×5×16的矩阵拉直成一个长度为5×5×16的向量。
    #举例说,每次训练64张图片,那么第四层池化层的输出的size为(64,5,5,16),拉直为向量,nodes=5×5×16=400,尺寸size变为(64,400)
    pool_shape = pool2.get_shape().as_list()
    nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
    reshaped = tf.reshape(pool2,[-1,nodes])

    #第五层:全连接层,nodes=5×5×16=400,400->120的全连接
    #尺寸变化:比如一组训练样本为64,那么尺寸变化为64×400->64×120
    #训练时,引入dropout,dropout在训练时会随机将部分节点的输出改为0,dropout可以避免过拟合问题。
    #这和模型越简单越不容易过拟合思想一致,和正则化限制权重的大小,使得模型不能任意拟合训练数据中的随机噪声,以此达到避免过拟合思想一致。
    #本文最后训练时没有采用dropout,dropout项传入参数设置成了False,因为训练和测试写在了一起没有分离,不过大家可以尝试。
    with tf.variable_scope('layer5-fc1'):
        fc1_weights = tf.get_variable('weight',[nodes,120],initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None:
            tf.add_to_collection('losses',regularizer(fc1_weights))
        fc1_biases = tf.get_variable('bias',[120],initializer=tf.constant_initializer(0.1))
        fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights) + fc1_biases)
        if train:
            fc1 = tf.nn.dropout(fc1,0.5)

    #第六层:全连接层,120->84的全连接
    #尺寸变化:比如一组训练样本为64,那么尺寸变化为64×120->64×84
    with tf.variable_scope('layer6-fc2'):
        fc2_weights = tf.get_variable('weight',[120,84],initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None:
            tf.add_to_collection('losses',regularizer(fc2_weights))
        fc2_biases = tf.get_variable('bias',[84],initializer=tf.truncated_normal_initializer(stddev=0.1))
        fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights) + fc2_biases)
        if train:
            fc2 = tf.nn.dropout(fc2,0.5)

    #第七层:全连接层(近似表示),84->10的全连接
    #尺寸变化:比如一组训练样本为64,那么尺寸变化为64×84->64×10。最后,64×10的矩阵经过softmax之后就得出了64张图片分类于每种数字的概率,
    #即得到最后的分类结果。
    with tf.variable_scope('layer7-fc3'):
        fc3_weights = tf.get_variable('weight',[84,10],initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None:
            tf.add_to_collection('losses',regularizer(fc3_weights))
        fc3_biases = tf.get_variable('bias',[10],initializer=tf.truncated_normal_initializer(stddev=0.1))
        logit = tf.matmul(fc2,fc3_weights) + fc3_biases
    return logit

AlexNet

def inference(images):
  """
  构建一个AlexNet模型

  """
  parameters = []
  # 第一层:卷积层conv1
  with tf.name_scope('conv1') as scope:
    kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96], dtype=tf.float32,
                                             stddev=1e-1), name='weights')
    conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
    biases = tf.Variable(tf.constant(0.0, shape=[96], dtype=tf.float32),
                         trainable=True, name='biases')
    bias = tf.nn.bias_add(conv, biases)
    conv1 = tf.nn.relu(bias, name=scope)
    print_activations(conv1)
    parameters += [kernel, biases]


  # 第二层:池化层pool1
    pool1 = tf.nn.max_pool(conv1,
                         ksize=[1, 3, 3, 1],
                         strides=[1, 2, 2, 1],
                         padding='VALID',
                         name='pool1')
    print_activations(pool1)

  # 第三层:卷积层2 conv2
  with tf.name_scope('conv2') as scope:
    kernel = tf.Variable(tf.truncated_normal([5, 5, 96, 256], dtype=tf.float32,
                                             stddev=1e-1), name='weights')
    conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
    biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                         trainable=True, name='biases')
    bias = tf.nn.bias_add(conv, biases)
    conv2 = tf.nn.relu(bias, name=scope)
    parameters += [kernel, biases]
    print_activations(conv2)

  # 第四层:池化层2 pool2
    pool2 = tf.nn.max_pool(conv2,
                         ksize=[1, 3, 3, 1],
                         strides=[1, 2, 2, 1],
                         padding='VALID',
                         name='pool2')
    print_activations(pool2)

  # 第五层:卷积层3 conv3
  with tf.name_scope('conv3') as scope:
    kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 384],
                                             dtype=tf.float32,
                                             stddev=1e-1), name='weights')
    conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
    biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32),
                         trainable=True, name='biases')
    bias = tf.nn.bias_add(conv, biases)
    conv3 = tf.nn.relu(bias, name=scope)
    parameters += [kernel, biases]
    print_activations(conv3)

  # 第六层:卷积层4 conv4
  with tf.name_scope('conv4') as scope:
    kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 384],
                                             dtype=tf.float32,
                                             stddev=1e-1), name='weights')
    conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
    biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32),
                         trainable=True, name='biases')
    bias = tf.nn.bias_add(conv, biases)
    conv4 = tf.nn.relu(bias, name=scope)
    parameters += [kernel, biases]
    print_activations(conv4)

  # 第七层:卷积层5 conv5
  with tf.name_scope('conv5') as scope:
    kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256],
                                             dtype=tf.float32,
                                             stddev=1e-1), name='weights')
    conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
    biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                         trainable=True, name='biases')
    bias = tf.nn.bias_add(conv, biases)
    conv5 = tf.nn.relu(bias, name=scope)
    parameters += [kernel, biases]
    print_activations(conv5)

  # 第八层:池化层 pool5
    pool5 = tf.nn.max_pool(conv5,
                         ksize=[1, 3, 3, 1],
                         strides=[1, 2, 2, 1],
                         padding='VALID',
                         name='pool5')
    print_activations(pool5)

    return pool5, parameters

Vgg

import tensorflow as tf
import numpy as np
from scipy.misc import imread, imresize
from imagenet_classes import class_names


class vgg16:
    def __init__(self, imgs, weights=None, sess=None):
        self.imgs = imgs
        self.convlayers()
        self.fc_layers()
        self.probs = tf.nn.softmax(self.fc3l)
        if weights is not None and sess is not None:
            self.load_weights(weights, sess)


    def convlayers(self):
        self.parameters = []

        # zero-mean input
        with tf.name_scope('preprocess') as scope:
            mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean')
            images = self.imgs-mean

        # conv1_1
        with tf.name_scope('conv1_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 3, 64], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv1_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv1_2
        with tf.name_scope('conv1_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 64], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv1_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv1_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool1
        self.pool1 = tf.nn.max_pool(self.conv1_2,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME',
                               name='pool1')

        # conv2_1
        with tf.name_scope('conv2_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.pool1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv2_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv2_2
        with tf.name_scope('conv2_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 128], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv2_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv2_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool2
        self.pool2 = tf.nn.max_pool(self.conv2_2,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME',
                               name='pool2')

        # conv3_1
        with tf.name_scope('conv3_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 256], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.pool2, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv3_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv3_2
        with tf.name_scope('conv3_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv3_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv3_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv3_3
        with tf.name_scope('conv3_3') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv3_2, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv3_3 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool3
        self.pool3 = tf.nn.max_pool(self.conv3_3,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME',
                               name='pool3')

        # conv4_1
        with tf.name_scope('conv4_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.pool3, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv4_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv4_2
        with tf.name_scope('conv4_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv4_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv4_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv4_3
        with tf.name_scope('conv4_3') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv4_2, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv4_3 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool4
        self.pool4 = tf.nn.max_pool(self.conv4_3,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME',
                               name='pool4')

        # conv5_1
        with tf.name_scope('conv5_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.pool4, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv5_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv5_2
        with tf.name_scope('conv5_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv5_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv5_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv5_3
        with tf.name_scope('conv5_3') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv5_2, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv5_3 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool5
        self.pool5 = tf.nn.max_pool(self.conv5_3,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME',
                               name='pool4')

    def fc_layers(self):
        # fc1
        with tf.name_scope('fc1') as scope:
            shape = int(np.prod(self.pool5.get_shape()[1:]))
            fc1w = tf.Variable(tf.truncated_normal([shape, 4096],
                                                         dtype=tf.float32,
                                                         stddev=1e-1), name='weights')
            fc1b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32),
                                 trainable=True, name='biases')
            pool5_flat = tf.reshape(self.pool5, [-1, shape])
            fc1l = tf.nn.bias_add(tf.matmul(pool5_flat, fc1w), fc1b)
            self.fc1 = tf.nn.relu(fc1l)
            self.parameters += [fc1w, fc1b]

        # fc2
        with tf.name_scope('fc2') as scope:
            fc2w = tf.Variable(tf.truncated_normal([4096, 4096],
                                                         dtype=tf.float32,
                                                         stddev=1e-1), name='weights')
            fc2b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32),
                                 trainable=True, name='biases')
            fc2l = tf.nn.bias_add(tf.matmul(self.fc1, fc2w), fc2b)
            self.fc2 = tf.nn.relu(fc2l)
            self.parameters += [fc2w, fc2b]

        # fc3
        with tf.name_scope('fc3') as scope:
            fc3w = tf.Variable(tf.truncated_normal([4096, 1000],
                                                         dtype=tf.float32,
                                                         stddev=1e-1), name='weights')
            fc3b = tf.Variable(tf.constant(1.0, shape=[1000], dtype=tf.float32),
                                 trainable=True, name='biases')
            self.fc3l = tf.nn.bias_add(tf.matmul(self.fc2, fc3w), fc3b)
            self.parameters += [fc3w, fc3b]

    def load_weights(self, weight_file, sess):
        weights = np.load(weight_file)
        keys = sorted(weights.keys())
        for i, k in enumerate(keys):
            print (i, k, np.shape(weights[k]))
            sess.run(self.parameters[i].assign(weights[k]))

if __name__ == '__main__':
    sess = tf.Session()
    imgs = tf.placeholder(tf.float32, [None, 224, 224, 3])
    vgg = vgg16(imgs, 'vgg16_weights.npz', sess)

    img1 = imread('laska.png', mode='RGB')
    img1 = imresize(img1, (224, 224))

    prob = sess.run(vgg.probs, feed_dict={vgg.imgs: [img1]})[0]
    preds = (np.argsort(prob)[::-1])[0:5]
    for p in preds:
        print( class_names[p], prob[p])

GoogLeNet

########定义函数生成网络中经常用到的函数的默认参数########
# 默认参数:卷积的激活函数、权重初始化方式、标准化器等
def inception_v3_arg_scope(weight_decay=0.00004,  # 设置L2正则的weight_decay
                           stddev=0.1, # 标准差默认值0.1
                           batch_norm_var_collection='moving_vars'):

    batch_norm_params = {  # 定义batch normalization(标准化)的参数字典
      'decay': 0.9997,  # 定义参数衰减系数
      'epsilon': 0.001,  
      'updates_collections': tf.GraphKeys.UPDATE_OPS,
      'variables_collections': {
          'beta': None,
          'gamma': None,
          'moving_mean': [batch_norm_var_collection],
          'moving_variance': [batch_norm_var_collection],
      }
  }

    with slim.arg_scope([slim.conv2d, slim.fully_connected], # 给函数的参数自动赋予某些默认值
                      weights_regularizer=slim.l2_regularizer(weight_decay)): # 对[slim.conv2d, slim.fully_connected]自动赋值
  # 使用slim.arg_scope后就不需要每次都重复设置参数了,只需要在有修改时设置
        with slim.arg_scope( # 嵌套一个slim.arg_scope对卷积层生成函数slim.conv2d的几个参数赋予默认值
            [slim.conv2d],
            weights_initializer=trunc_normal(stddev), # 权重初始化器
            activation_fn=tf.nn.relu, # 激活函数
            normalizer_fn=slim.batch_norm, # 标准化器
            normalizer_params=batch_norm_params) as sc: # 标准化器的参数设置为前面定义的batch_norm_params
        return sc # 最后返回定义好的scope


########定义函数可以生成Inception V3网络的卷积部分########
def inception_v3_base(inputs, scope=None):
  '''
  Args:
  inputs:输入的tensor
  scope:包含了函数默认参数的环境
  '''
  end_points = {} # 定义一个字典表保存某些关键节点供之后使用

    with tf.variable_scope(scope, 'InceptionV3', [inputs]):
        with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], # 对三个参数设置默认值
                            stride=1, padding='VALID'):
          # 正式定义Inception V3的网络结构。首先是前面的非Inception Module的卷积层
          # 299 x 299 x 3
          # 第一个参数为输入的tensor,第二个是输出的通道数,卷积核尺寸,步长stride,padding模式
              net = slim.conv2d(inputs, 32, [3, 3], stride=2, scope='Conv2d_1a_3x3') # 直接使用slim.conv2d创建卷积层
              # 149 x 149 x 32
              '''
              因为使用了slim以及slim.arg_scope,我们一行代码就可以定义好一个卷积层
              相比AlexNet使用好几行代码定义一个卷积层,或是VGGNet中专门写一个函数定义卷积层,都更加方便
              '''
              net = slim.conv2d(net, 32, [3, 3], scope='Conv2d_2a_3x3')
              # 147 x 147 x 32
              net = slim.conv2d(net, 64, [3, 3], padding='SAME', scope='Conv2d_2b_3x3')
              # 147 x 147 x 64
              net = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_3a_3x3')
              # 73 x 73 x 64
              net = slim.conv2d(net, 80, [1, 1], scope='Conv2d_3b_1x1')
              # 73 x 73 x 80.
              net = slim.conv2d(net, 192, [3, 3], scope='Conv2d_4a_3x3')
              # 71 x 71 x 192.
              net = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_5a_3x3')
          # 35 x 35 x 192.

          # 上面部分代码一共有5个卷积层,2个池化层,实现了对图片数据的尺寸压缩,并对图片特征进行了抽象

        '''
        三个连续的Inception模块组,三个Inception模块组中各自分别有多个Inception Module,这部分是Inception Module V3
        的精华所在。每个Inception模块组内部的几个Inception Mdoule结构非常相似,但是存在一些细节的不同
        '''
        # Inception blocks
        with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], # 设置所有模块组的默认参数
                            stride=1, padding='SAME'): # 将所有卷积层、最大池化、平均池化层步长都设置为1
          # mixed: 35 x 35 x 256.
          # 第一个模块组包含了三个结构类似的Inception Module
              with tf.variable_scope('Mixed_5b'): # 第一个Inception Module名称。Inception Module有四个分支
                with tf.variable_scope('Branch_0'): # 第一个分支64通道的1*1卷积
                    branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'): # 第二个分支48通道1*1卷积,链接一个64通道的5*5卷积
                    branch_1 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1, 64, [5, 5], scope='Conv2d_0b_5x5')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
                    branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3')
                with tf.variable_scope('Branch_3'): # 第四个分支为3*3的平均池化,连接32通道的1*1卷积
                    branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3, 32, [1, 1], scope='Conv2d_0b_1x1')
                net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3) # 将四个分支的输出合并在一起(第三个维度合并,即输出通道上合并)

          '''
          因为这里所有层步长均为1,并且padding模式为SAME,所以图片尺寸不会缩小,但是通道数增加了。四个分支通道数之和
          64+64+96+32=256,最终输出的tensor的图片尺寸为35*35*256。
          第一个模块组所有Inception Module输出图片尺寸都是35*35,但是后两个输出通道数会发生变化。
          '''

          # mixed_1: 35 x 35 x 288.
        with tf.variable_scope('Mixed_5c'):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0b_1x1')
                branch_1 = slim.conv2d(branch_1, 64, [5, 5], scope='Conv_1_0c_5x5')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
                branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

          # mixed_2: 35 x 35 x 288.
          with tf.variable_scope('Mixed_5d'):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 64, [5, 5], scope='Conv2d_0b_5x5')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
                branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

          # 第二个Inception模块组。第二个到第五个Inception Module结构相似。
          # mixed_3: 17 x 17 x 768.
        with tf.variable_scope('Mixed_6a'):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 384, [3, 3], stride=2,
                                     padding='VALID', scope='Conv2d_1a_1x1') # 图片会被压缩
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 96, [3, 3], scope='Conv2d_0b_3x3')
                branch_1 = slim.conv2d(branch_1, 96, [3, 3], stride=2,
                                     padding='VALID', scope='Conv2d_1a_1x1') # 图片被压缩
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                         scope='MaxPool_1a_3x3')
            net = tf.concat([branch_0, branch_1, branch_2], 3) # 输出尺寸定格在17 x 17 x 768

          # mixed4: 17 x 17 x 768.
          with tf.variable_scope('Mixed_6b'):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 128, [1, 7], scope='Conv2d_0b_1x7') # 串联1*7卷积和7*1卷积合成7*7卷积,减少了参数,减轻了过拟合
                branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'): 
                branch_2 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1') # 反复将7*7卷积拆分
                branch_2 = slim.conv2d(branch_2, 128, [7, 1], scope='Conv2d_0b_7x1') 
                branch_2 = slim.conv2d(branch_2, 128, [1, 7], scope='Conv2d_0c_1x7')
                branch_2 = slim.conv2d(branch_2, 128, [7, 1], scope='Conv2d_0d_7x1')
                branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

          # mixed_5: 17 x 17 x 768.
          with tf.variable_scope('Mixed_6c'):
            with tf.variable_scope('Branch_0'):
              '''
              我们的网络每经过一个inception module,即使输出尺寸不变,但是特征都相当于被重新精炼了一遍,
              其中丰富的卷积和非线性化对提升网络性能帮助很大。
              '''
              branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 160, [1, 7], scope='Conv2d_0b_1x7')
                branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 160, [7, 1], scope='Conv2d_0b_7x1')
                branch_2 = slim.conv2d(branch_2, 160, [1, 7], scope='Conv2d_0c_1x7')
                branch_2 = slim.conv2d(branch_2, 160, [7, 1], scope='Conv2d_0d_7x1')
                branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
          # mixed_6: 17 x 17 x 768.
          with tf.variable_scope('Mixed_6d'):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 160, [1, 7], scope='Conv2d_0b_1x7')
                branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 160, [7, 1], scope='Conv2d_0b_7x1')
                branch_2 = slim.conv2d(branch_2, 160, [1, 7], scope='Conv2d_0c_1x7')
                branch_2 = slim.conv2d(branch_2, 160, [7, 1], scope='Conv2d_0d_7x1')
                branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

          # mixed_7: 17 x 17 x 768.
          with tf.variable_scope('Mixed_6e'):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 192, [1, 7], scope='Conv2d_0b_1x7')
                branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0b_7x1')
                branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0c_1x7')
                branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0d_7x1')
                branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
        end_points['Mixed_6e'] = net # 将Mixed_6e存储于end_points中,作为Auxiliary Classifier辅助模型的分类

          # 第三个inception模块组包含了三个inception module
          # mixed_8: 8 x 8 x 1280.
         with tf.variable_scope('Mixed_7a'):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
                branch_0 = slim.conv2d(branch_0, 320, [3, 3], stride=2,
                                     padding='VALID', scope='Conv2d_1a_3x3') # 压缩图片
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 192, [1, 7], scope='Conv2d_0b_1x7')
                branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1')
                branch_1 = slim.conv2d(branch_1, 192, [3, 3], stride=2,
                                     padding='VALID', scope='Conv2d_1a_3x3')
            with tf.variable_scope('Branch_2'): # 池化层不会对输出通道数产生改变
                branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                         scope='MaxPool_1a_3x3')
            net = tf.concat([branch_0, branch_1, branch_2], 3) # 输出图片尺寸被缩小,通道数增加,tensor的总size在持续下降中
          # mixed_9: 8 x 8 x 2048.
          with tf.variable_scope('Mixed_7b'):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 320, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = tf.concat([
                  slim.conv2d(branch_1, 384, [1, 3], scope='Conv2d_0b_1x3'),
                  slim.conv2d(branch_1, 384, [3, 1], scope='Conv2d_0b_3x1')], 3)
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 448, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(
                  branch_2, 384, [3, 3], scope='Conv2d_0b_3x3')
                branch_2 = tf.concat([
                  slim.conv2d(branch_2, 384, [1, 3], scope='Conv2d_0c_1x3'),
                  slim.conv2d(branch_2, 384, [3, 1], scope='Conv2d_0d_3x1')], 3)
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(
                  branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3) # 输出通道数增加到2048

          # mixed_10: 8 x 8 x 2048.
          with tf.variable_scope('Mixed_7c'):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 320, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = tf.concat([
                slim.conv2d(branch_1, 384, [1, 3], scope='Conv2d_0b_1x3'),
                slim.conv2d(branch_1, 384, [3, 1], scope='Conv2d_0c_3x1')], 3)
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 448, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(
                branch_2, 384, [3, 3], scope='Conv2d_0b_3x3')
                branch_2 = tf.concat([
                slim.conv2d(branch_2, 384, [1, 3], scope='Conv2d_0c_1x3'),
                slim.conv2d(branch_2, 384, [3, 1], scope='Conv2d_0d_3x1')], 3)
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(
                branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
        return net, end_points
          #Inception V3网络的核心部分,即卷积层部分就完成了
          '''
          设计inception net的重要原则是图片尺寸不断缩小,inception模块组的目的都是将空间结构简化,同时将空间信息转化为
          高阶抽象的特征信息,即将空间维度转为通道的维度。降低了计算量。Inception Module是通过组合比较简单的特征
          抽象(分支1)、比较比较复杂的特征抽象(分支2和分支3)和一个简化结构的池化层(分支4),一共四种不同程度的
          特征抽象和变换来有选择地保留不同层次的高阶特征,这样最大程度地丰富网络的表达能力。
      '''


########全局平均池化、Softmax和Auxiliary Logits########
def inception_v3(inputs,
                 num_classes=1000, # 最后需要分类的数量(比赛数据集的种类数)
                 is_training=True, # 标志是否为训练过程,只有在训练时Batch normalization和Dropout才会启用
                 dropout_keep_prob=0.8, # 节点保留比率
                 prediction_fn=slim.softmax, # 最后用来分类的函数
                 spatial_squeeze=True, # 参数标志是否对输出进行squeeze操作(去除维度数为1的维度,比如5*3*1转为5*3)
                 reuse=None, # 是否对网络和Variable进行重复使用
                 scope='InceptionV3'): # 包含函数默认参数的环境

    with tf.variable_scope(scope, 'InceptionV3', [inputs, num_classes], # 定义参数默认值
                         reuse=reuse) as scope:
        with slim.arg_scope([slim.batch_norm, slim.dropout], # 定义标志默认值
                        is_training=is_training):
      # 拿到最后一层的输出net和重要节点的字典表end_points
          net, end_points = inception_v3_base(inputs, scope=scope) # 用定义好的函数构筑整个网络的卷积部分

          # Auxiliary Head logits作为辅助分类的节点,对分类结果预测有很大帮助
            with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                              stride=1, padding='SAME'): # 将卷积、最大池化、平均池化步长设置为1
            aux_logits = end_points['Mixed_6e'] # 通过end_points取到Mixed_6e
            with tf.variable_scope('AuxLogits'):
                aux_logits = slim.avg_pool2d(
                    aux_logits, [5, 5], stride=3, padding='VALID', # 在Mixed_6e之后接平均池化。压缩图像尺寸
                    scope='AvgPool_1a_5x5')
                aux_logits = slim.conv2d(aux_logits, 128, [1, 1], # 卷积。压缩图像尺寸。
                                       scope='Conv2d_1b_1x1')

              # Shape of feature map before the final layer.
                aux_logits = slim.conv2d(
                  aux_logits, 768, [5,5],
                  weights_initializer=trunc_normal(0.01), # 权重初始化方式重设为标准差为0.01的正态分布
                  padding='VALID', scope='Conv2d_2a_5x5')
                aux_logits = slim.conv2d(
                  aux_logits, num_classes, [1, 1], activation_fn=None,
                  normalizer_fn=None, weights_initializer=trunc_normal(0.001), # 输出变为1*1*1000
                  scope='Conv2d_2b_1x1')
                if spatial_squeeze: # tf.squeeze消除tensor中前两个为1的维度。
                    aux_logits = tf.squeeze(aux_logits, [1, 2], name='SpatialSqueeze')
                end_points['AuxLogits'] = aux_logits # 最后将辅助分类节点的输出aux_logits储存到字典表end_points中

          # 处理正常的分类预测逻辑
          # Final pooling and prediction
             with tf.variable_scope('Logits'):
                net = slim.avg_pool2d(net, [8, 8], padding='VALID',
                                      scope='AvgPool_1a_8x8')
                # 1 x 1 x 2048
                net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
                end_points['PreLogits'] = net
                # 2048
                logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, # 输出通道数1000
                                     normalizer_fn=None, scope='Conv2d_1c_1x1') # 激活函数和规范化函数设为空
            if spatial_squeeze: # tf.squeeze去除输出tensor中维度为1的节点
                logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
            # 1000
            end_points['Logits'] = logits
            end_points['Predictions'] = prediction_fn(logits, scope='Predictions') # Softmax对结果进行分类预测
    return logits, end_points # 最后返回logits和包含辅助节点的end_points

ResNet

class ResNet(object):

    def __init__(self, hps, images, labels, mode):
    
        self.hps = hps
        self._images = images
        self.labels = labels
        self.mode = mode

        self._extra_train_ops = []

  # 构建模型图
   def build_graph(self):
    # 新建全局step
    self.global_step = tf.contrib.framework.get_or_create_global_step()
    # 构建ResNet网络模型
    self._build_model()
    # 构建优化训练操作
    if self.mode == 'train':
        self._build_train_op()
    # 合并所有总结
    self.summaries = tf.summary.merge_all()


  # 构建模型
  def _build_model(self):
    with tf.variable_scope('init'):
        x = self._images
        """第一层卷积(3,3x3/1,16)"""
        x = self._conv('init_conv', x, 3, 3, 16, self._stride_arr(1))

    # 残差网络参数
    strides = [1, 2, 2]
    # 激活前置
    activate_before_residual = [True, False, False]
    if self.hps.use_bottleneck:
      # bottleneck残差单元模块
      res_func = self._bottleneck_residual
      # 通道数量
      filters = [16, 64, 128, 256]
    else:
      # 标准残差单元模块
      res_func = self._residual
      # 通道数量
      filters = [16, 16, 32, 64]

    # 第一组
    with tf.variable_scope('unit_1_0'):
        x = res_func(x, filters[0], filters[1], 
                   self._stride_arr(strides[0]),
                   activate_before_residual[0])
    for i in six.moves.range(1, self.hps.num_residual_units):
        with tf.variable_scope('unit_1_%d' % i):
            x = res_func(x, filters[1], filters[1], self._stride_arr(1), False)

    # 第二组
    with tf.variable_scope('unit_2_0'):
        x = res_func(x, filters[1], filters[2], 
                   self._stride_arr(strides[1]),
                   activate_before_residual[1])
    for i in six.moves.range(1, self.hps.num_residual_units):
        with tf.variable_scope('unit_2_%d' % i):
            x = res_func(x, filters[2], filters[2], self._stride_arr(1), False)
        
    # 第三组
    with tf.variable_scope('unit_3_0'):
        x = res_func(x, filters[2], filters[3], self._stride_arr(strides[2]),
                   activate_before_residual[2])
    for i in six.moves.range(1, self.hps.num_residual_units):
        with tf.variable_scope('unit_3_%d' % i):
            x = res_func(x, filters[3], filters[3], self._stride_arr(1), False)

    # 全局池化层
    with tf.variable_scope('unit_last'):
        x = self._batch_norm('final_bn', x)
        x = self._relu(x, self.hps.relu_leakiness)
        x = self._global_avg_pool(x)

    # 全连接层 + Softmax
    with tf.variable_scope('logit'):
        logits = self._fully_connected(x, self.hps.num_classes)
        self.predictions = tf.nn.softmax(logits)

    # 构建损失函数
    with tf.variable_scope('costs'):
      # 交叉熵
      xent = tf.nn.softmax_cross_entropy_with_logits(
          logits=logits, labels=self.labels)
      # 加和
      self.cost = tf.reduce_mean(xent, name='xent')
      # L2正则,权重衰减
      self.cost += self._decay()
      # 添加cost总结,用于Tensorborad显示
      tf.summary.scalar('cost', self.cost)

  # 构建训练操作
  def _build_train_op(self):
    # 学习率/步长
    self.lrn_rate = tf.constant(self.hps.lrn_rate, tf.float32)
    tf.summary.scalar('learning_rate', self.lrn_rate)

    # 计算训练参数的梯度
    trainable_variables = tf.trainable_variables()
    grads = tf.gradients(self.cost, trainable_variables)

    # 设置优化方法
    if self.hps.optimizer == 'sgd':
        optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate)
    elif self.hps.optimizer == 'mom':
        optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9)

    # 梯度优化操作
    apply_op = optimizer.apply_gradients(
                        zip(grads, trainable_variables),
                        global_step=self.global_step, 
                        name='train_step')
    
    # 合并BN更新操作
    train_ops = [apply_op] + self._extra_train_ops
    # 建立优化操作组
    self.train_op = tf.group(*train_ops)


  # 把步长值转换成tf.nn.conv2d需要的步长数组
  def _stride_arr(self, stride):    
    return [1, stride, stride, 1]

  # 残差单元模块
  def _residual(self, x, in_filter, out_filter, stride, activate_before_residual=False):
    # 是否前置激活(取残差直连之前进行BN和ReLU)
    if activate_before_residual:
      with tf.variable_scope('shared_activation'):
        # 先做BN和ReLU激活
        x = self._batch_norm('init_bn', x)
        x = self._relu(x, self.hps.relu_leakiness)
        # 获取残差直连
        orig_x = x
    else:
      with tf.variable_scope('residual_only_activation'):
        # 获取残差直连
        orig_x = x
        # 后做BN和ReLU激活
        x = self._batch_norm('init_bn', x)
        x = self._relu(x, self.hps.relu_leakiness)

    # 第1子层
    with tf.variable_scope('sub1'):
      # 3x3卷积,使用输入步长,通道数(in_filter -> out_filter)
      x = self._conv('conv1', x, 3, in_filter, out_filter, stride)

    # 第2子层
    with tf.variable_scope('sub2'):
      # BN和ReLU激活
      x = self._batch_norm('bn2', x)
      x = self._relu(x, self.hps.relu_leakiness)
      # 3x3卷积,步长为1,通道数不变(out_filter)
      x = self._conv('conv2', x, 3, out_filter, out_filter, [1, 1, 1, 1])
    
    # 合并残差层
    with tf.variable_scope('sub_add'):
      # 当通道数有变化时
      if in_filter != out_filter:
        # 均值池化,无补零
        orig_x = tf.nn.avg_pool(orig_x, stride, stride, 'VALID')
        # 通道补零(第4维前后对称补零)
        orig_x = tf.pad(orig_x, 
                        [[0, 0], 
                         [0, 0], 
                         [0, 0],
                         [(out_filter-in_filter)//2, (out_filter-in_filter)//2]
                        ])
      # 合并残差
      x += orig_x

    tf.logging.debug('image after unit %s', x.get_shape())
    return x

  # bottleneck残差单元模块
  def _bottleneck_residual(self, x, in_filter, out_filter, stride,
                           activate_before_residual=False):
    # 是否前置激活(取残差直连之前进行BN和ReLU)
    if activate_before_residual:
      with tf.variable_scope('common_bn_relu'):
        # 先做BN和ReLU激活
        x = self._batch_norm('init_bn', x)
        x = self._relu(x, self.hps.relu_leakiness)
        # 获取残差直连
        orig_x = x
    else:
      with tf.variable_scope('residual_bn_relu'):
        # 获取残差直连
        orig_x = x
        # 后做BN和ReLU激活
        x = self._batch_norm('init_bn', x)
        x = self._relu(x, self.hps.relu_leakiness)

    # 第1子层
    with tf.variable_scope('sub1'):
      # 1x1卷积,使用输入步长,通道数(in_filter -> out_filter/4)
      x = self._conv('conv1', x, 1, in_filter, out_filter/4, stride)

    # 第2子层
    with tf.variable_scope('sub2'):
      # BN和ReLU激活
      x = self._batch_norm('bn2', x)
      x = self._relu(x, self.hps.relu_leakiness)
      # 3x3卷积,步长为1,通道数不变(out_filter/4)
      x = self._conv('conv2', x, 3, out_filter/4, out_filter/4, [1, 1, 1, 1])

    # 第3子层
    with tf.variable_scope('sub3'):
      # BN和ReLU激活
      x = self._batch_norm('bn3', x)
      x = self._relu(x, self.hps.relu_leakiness)
      # 1x1卷积,步长为1,通道数不变(out_filter/4 -> out_filter)
      x = self._conv('conv3', x, 1, out_filter/4, out_filter, [1, 1, 1, 1])

    # 合并残差层
    with tf.variable_scope('sub_add'):
      # 当通道数有变化时
      if in_filter != out_filter:
        # 1x1卷积,使用输入步长,通道数(in_filter -> out_filter)
        orig_x = self._conv('project', orig_x, 1, in_filter, out_filter, stride)
      
      # 合并残差
      x += orig_x

    tf.logging.info('image after unit %s', x.get_shape())
    return x


  # Batch Normalization批归一化
  # ((x-mean)/var)*gamma+beta
  def _batch_norm(self, name, x):
    with tf.variable_scope(name):
      # 输入通道维数
      params_shape = [x.get_shape()[-1]]
      # offset
      beta = tf.get_variable('beta', 
                             params_shape, 
                             tf.float32,
                             initializer=tf.constant_initializer(0.0, tf.float32))
      # scale
      gamma = tf.get_variable('gamma', 
                              params_shape, 
                              tf.float32,
                              initializer=tf.constant_initializer(1.0, tf.float32))

      if self.mode == 'train':
        # 为每个通道计算均值、标准差
        mean, variance = tf.nn.moments(x, [0, 1, 2], name='moments')
        # 新建或建立测试阶段使用的batch均值、标准差
        moving_mean = tf.get_variable('moving_mean', 
                                      params_shape, tf.float32,
                                      initializer=tf.constant_initializer(0.0, tf.float32),
                                      trainable=False)
        moving_variance = tf.get_variable('moving_variance', 
                                          params_shape, tf.float32,
                                          initializer=tf.constant_initializer(1.0, tf.float32),
                                          trainable=False)
        # 添加batch均值和标准差的更新操作(滑动平均)
        # moving_mean = moving_mean * decay + mean * (1 - decay)
        # moving_variance = moving_variance * decay + variance * (1 - decay)
        self._extra_train_ops.append(moving_averages.assign_moving_average(
                                                        moving_mean, mean, 0.9))
        self._extra_train_ops.append(moving_averages.assign_moving_average(
                                                        moving_variance, variance, 0.9))
      else:
        # 获取训练中积累的batch均值、标准差
        mean = tf.get_variable('moving_mean', 
                               params_shape, tf.float32,
                               initializer=tf.constant_initializer(0.0, tf.float32),
                               trainable=False)
        variance = tf.get_variable('moving_variance', 
                                   params_shape, tf.float32,
                                   initializer=tf.constant_initializer(1.0, tf.float32),
                                   trainable=False)
        # 添加到直方图总结
        tf.summary.histogram(mean.op.name, mean)
        tf.summary.histogram(variance.op.name, variance)

      # BN层:((x-mean)/var)*gamma+beta
      y = tf.nn.batch_normalization(x, mean, variance, beta, gamma, 0.001)
      y.set_shape(x.get_shape())
      return y


  # 权重衰减,L2正则loss
  def _decay(self):
    costs = []
    # 遍历所有可训练变量
    for var in tf.trainable_variables():
      #只计算标有“DW”的变量
      if var.op.name.find(r'DW') > 0:
        costs.append(tf.nn.l2_loss(var))
    # 加和,并乘以衰减因子
    return tf.multiply(self.hps.weight_decay_rate, tf.add_n(costs))

  # 2D卷积
  def _conv(self, name, x, filter_size, in_filters, out_filters, strides):
    with tf.variable_scope(name):
      n = filter_size * filter_size * out_filters
      # 获取或新建卷积核,正态随机初始化
      kernel = tf.get_variable(
              'DW', 
              [filter_size, filter_size, in_filters, out_filters],
              tf.float32, 
              initializer=tf.random_normal_initializer(stddev=np.sqrt(2.0/n)))
      # 计算卷积
      return tf.nn.conv2d(x, kernel, strides, padding='SAME')

  # leaky ReLU激活函数,泄漏参数leakiness为0就是标准ReLU
  def _relu(self, x, leakiness=0.0):
    return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
  
  # 全连接层,网络最后一层
  def _fully_connected(self, x, out_dim):
    # 输入转换成2D tensor,尺寸为[N,-1]
    x = tf.reshape(x, [self.hps.batch_size, -1])
    # 参数w,平均随机初始化,[-sqrt(3/dim), sqrt(3/dim)]*factor
    w = tf.get_variable('DW', [x.get_shape()[1], out_dim],
                        initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
    # 参数b,0值初始化
    b = tf.get_variable('biases', [out_dim], initializer=tf.constant_initializer())
    # 计算x*w+b
    return tf.nn.xw_plus_b(x, w, b)

  # 全局均值池化
  def _global_avg_pool(self, x):
    assert x.get_shape().ndims == 4
    # 在第2&3维度上计算均值,尺寸由WxH收缩为1x1
    return tf.reduce_mean(x, [1, 2])