总结归纳


  1. 二分查找的时间复杂度:O(logn) 。
  2. 二分查找需要线性表有序,对于静态线性表,可以先使用 C++ 的标准库函数 sort() 或 C 语言的标准库函数 qsort() 进行排序,再进行查找。在高校的机试考试中,不必重写一个排序算法,直接调接口即可。
  3. 二分查找的过程:​ low 指针指向最左边,high 指针指向最右边,每次判断中间数据 (low + high) / 2 是否等于要查找的值,若中间值小于要查找的值,意味着查找值位于中间点右侧,令 low = mid + 1,缩小一半的查找空间;若中间值大于要查找的值,意味着查找值位于中间点左侧,令 high = mid - 1。
  4. C/C++语法中,a / b 结果是向下取整,举例说明:5 / 2 = 2。

代码实践

/*
二分查找(折半查找)
*/

#include <algorithm> // C++标准库 sort(起始地址,结束地址,牌序方式(不设置则默认从小到大))
#include <iostream>

#include <stdlib.h> // C语言标准库 qsort(起始地址,长度,数据大小,比较方式)
#include <time.h>

using namespace std;

typedef int ElemType;

struct List {
ElemType *data;
int len;
};

// 初始化
void InitList(List &L, int length) {
L.len = length;
L.data = (ElemType *)malloc(sizeof(ElemType) * L.len);
srand(time(NULL));
for (int i = 0; i < L.len; i++) {
L.data[i] = rand() % 100; // 随机生成
}
}

// 遍历
void Print(List L) {
for (int i = 0; i < L.len; i++) {
cout << L.data[i] << " ";
}
cout << endl;
}

// 二分查找
int BinarySearch(List L, ElemType key) {
int low = 0, high = L.len - 1, mid;
while (low <= high) {
mid = (low + high) / 2;
if (L.data[mid] == key) {
return mid + 1; // mid为数组下标,从0开始
} else if (L.data[mid] > key) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return -1;
}

// 比较方式,固定格式
int compare(const void *left, const void *right) {
return (*(ElemType *)left - *(ElemType *)right); //升序
// return (*(ElemType*)right - *(ElemType*)left); //降序
}

int main() {
List L;
ElemType key;
int pos; // 查找位置
InitList(L, 10);
Print(L);

sort(L.data, L.data + L.len); // C++标准库排序方法
// qsort(L.data, 10, sizeof(ElemType), compare); // C语言标准库排序方法
Print(L);

cout << "输入查找数值:" << endl;
cin >> key;

pos = BinarySearch(L, key);
if (pos == -1) {
cout << "未查找到" << endl;
} else {
cout << "查找到的位置:" << pos << endl;
}

return 0;
}