传送门
这题贼简单,结果线段树竟然写错了,奇耻大辱。
由题意得,每一个数的'1'的个数只减不增,那么最多只会改31次,因此对于删除lowbit的操作,可以暴力修改,时间复杂度\(O(nlog^2n)\)。
而对于第二种操作,只是相当于把最高位的'1'往高挪了一位,那么用线段树维护区间最高位的和,以及向左移动多少位的标记。区间修改的时候就将标记+1,并且区间和加上最高位的和,最高位的和再乘以2即可。
#include<bits/stdc++.h>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
const int maxn = 1e5 + 5;
const ll mod = 998244353;
const int N = 30;
In ll read() {ll x; scanf("%lld", &x); return x;}
In void write(ll x) {printf("%lld", x);}
ll q2[maxn];
In ll ADD(const ll& a, const ll& b) {return a + b < mod ? a + b : a + b - mod;}
int n, Q;
ll a[maxn];
struct Tree
{
int l, r;
ll sum, rsum, lzy;
bool lft;
In Tree operator + (const Tree& oth)const
{
Tree ret; ret.l = l, ret.r = oth.r;
ret.sum = ADD(sum, oth.sum);
ret.rsum = ADD(rsum, oth.rsum);
ret.lzy = 0;
ret.lft = lft | oth.lft;
return ret;
}
}t[maxn << 2];
In void build(int L, int R, int now)
{
t[now].l = L, t[now].r = R;
if(L == R)
{
a[L] = read();
t[now].sum = a[L] % mod, t[now].lzy = 0;
t[now].rsum = 0;
if(a[L]) t[now].lft = 1;
for(int i = N; i >= 0; --i)
if((a[L] >> i) & 1)
{
t[now].rsum = (1 << i) % mod;
break;
}
return;
}
int mid = (L + R) >> 1;
build(L, mid, now << 1), build(mid + 1, R, now << 1 | 1);
t[now] = t[now << 1] + t[now << 1 | 1];
}
In void Change(int now, int d)
{
ll tp = q2[d];
t[now].sum = ADD(t[now].sum, t[now].rsum * (tp - 1 + mod) % mod);
t[now].rsum = t[now].rsum * tp % mod;
t[now].lzy += d;
}
In void pushdown(int now)
{
if(t[now].lzy)
{
Change(now << 1, t[now].lzy), Change(now << 1 | 1, t[now].lzy);
t[now].lzy = 0;
}
}
In void update_low(int L, int R, int now)
{
if(!t[now].lft) return; //整个区间都是0了
if(t[now].l == t[now].r) //我竟然写成L == R,而且整场比赛没看出来
{
ll tp = a[L] & (-a[L]);
if(tp == a[L])
{
t[now].rsum = t[now].sum = 0;
t[now].lzy = t[now].lft = 0;
}
else
{
t[now].sum = ADD(t[now].sum, mod- tp % mod);
a[L] -= tp;
}
return;
}
pushdown(now);
int mid = (t[now].l + t[now].r) >> 1;
if(R <= mid) update_low(L, R, now << 1);
else if(L > mid) update_low(L, R, now << 1 | 1);
else update_low(L, mid, now << 1), update_low(mid + 1, R, now << 1 | 1);
t[now] = t[now << 1] + t[now << 1 | 1];
}
In void update_hig(int L, int R, int now)
{
if(t[now].l == L && t[now].r == R)
{
Change(now, 1);
return;
}
pushdown(now);
int mid = (t[now].l + t[now].r) >> 1;
if(R <= mid) update_hig(L, R, now << 1);
else if(L > mid) update_hig(L, R, now << 1 | 1);
else update_hig(L, mid, now << 1), update_hig(mid + 1, R, now << 1 | 1);
t[now] = t[now << 1] + t[now << 1 | 1];
}
In ll query(int L, int R, int now)
{
if(t[now].l == L && t[now].r == R) return t[now].sum;
pushdown(now);
int mid = (t[now].l + t[now].r) >> 1;
if(R <= mid) return query(L, R, now << 1);
else if(L > mid) return query(L, R, now << 1 |1);
else return ADD(query(L, mid, now << 1), query(mid + 1, R, now << 1 | 1));
}
int main()
{
int T = read();
q2[0] = 1;
for(int i = 1; i < maxn; ++i) q2[i] = q2[i - 1] * 2 % mod;
while(T--)
{
n = read();
build(1, n, 1);
Q = read();
for(int i = 1; i <= Q; ++i)
{
int op = read(), L = read(), R = read();
if(L > R) swap(L, R);
if(op == 1) write(query(L, R, 1)), enter;
else if(op == 2) update_low(L, R, 1);
else update_hig(L, R, 1);
}
}
return 0;
}