点击上方 "程序员小乐"关注, 星标或置顶一起成长
后台回复“大礼包”有惊喜礼包!
关注订阅号「程序员小乐」,收看更多精彩内容
每日英文
If you concentrate on the ONE thing in your life that makes you truly happy... everything else in your life will fall into place.
如果人只关注着真正带给自己快乐的事,那其余一切,就都清晰明了了。
每日掏心话
其实,痛是很难分享出去的,你复述一次你就伤一次,别人没共鸣,你就更受伤。隐忍不说,只是做事,时间会让痛过去。
来自:废物大师兄 | 责编:乐乐
链接:cnblogs.com/cjsblog/p/11613708.html
后端架构师(ID:study_tech)第 1078 次推文
往日回顾:广州蛋壳公寓18层租客跳楼身亡,室友:他刚毕业没工作,房东就赶我们走!微众银行紧急公告...
正文
Bit-map的基本思想就是用一个bit位来标记某个元素对应的Value,而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省。(PS:划重点 节省存储空间)
假设有这样一个需求:在20亿个随机整数中找出某个数m是否存在其中,并假设32位操作系统,4G内存
在Java中,int占4字节,1字节=8位(1 byte = 8 bit)
如果每个数字用int存储,那就是20亿个int,因而占用的空间约为 (2000000000*4/1024/1024/1024)≈7.45G
如果按位存储就不一样了,20亿个数就是20亿位,占用空间约为 (2000000000/8/1024/1024/1024)≈0.23G
高下立判,无需多言
面试官问我系列:
1、面试官问我:String长度有限制吗?是多少?我竟然回答不上来...
2、面试官问我:介绍一下 MyBatis 事务?我竟然回答不上来...
3、面试官问我:上亿数据量下,Kafka是如何优化JVM GC问题的?我竟然回答不上来...
4、面试官问我:为什么 wait() 方法需要写在while里,而不是if?我竟然回答不上来...
那么,问题来了,如何表示一个数呢?
刚才说了,每一位表示一个数,0表示不存在,1表示存在,这正符合二进制
这样我们可以很容易表示{1,2,4,6}这几个数:
计算机内存分配的最小单位是字节,也就是8位,那如果要表示{12,13,15}怎么办呢?
当然是在另一个8位上表示了:
这样的话,好像变成一个二维数组了
1个int占32位,那么我们只需要申请一个int数组长度为 int tmp[1+N/32] 即可存储,其中N表示要存储的这些数中的最大值,于是乎:
tmp[0]:可以表示0~31
tmp[1]:可以表示32~63
tmp[2]:可以表示64~95
。。。
如此一来,给定任意整数M,那么M/32就得到下标,M%32就知道它在此下标的哪个位置
添加
这里有个问题,我们怎么把一个数放进去呢?例如,想把5这个数字放进去,怎么做呢?
首先,5/32=0,5%32=5,也是说它应该在tmp[0]的第5个位置,那我们把1向左移动5位,然后按位或
换成二进制就是
这就相当于 86 | 32 = 118
86 | (1<<5) = 118
b[0] = b[0] | (1<<5)
也就是说,要想插入一个数,将1左移带代表该数字的那一位,然后与原数进行按位或操作
在公众号程序员小乐后台回复“Java”,获取一份Java面试题和答案惊喜礼包。
化简一下,就是 86 + (5/8) | (1<<(5%8))
因此,公式可以概括为:p + (i/8)|(1<<(i%8)) 其中,p表示现在的值,i表示待插入的数
清除
以上是添加,那如果要清除该怎么做呢?
还是上面的例子,假设我们要6移除,该怎么做呢?
从图上看,只需将该数所在的位置为0即可
1左移6位,就到达6这个数字所代表的位,然后按位取反,最后与原数按位与,这样就把该位置为0了
b[0] = b[0] & (~(1<<6))
b[0] = b[0] & (~(1<<(i%8)))
查找
前面我们也说了,每一位代表一个数字,1表示有(或者说存在),0表示无(或者说不存在)。通过把该为置为1或者0来达到添加和清除的小伙,那么判断一个数存不存在就是判断该数所在的位是0还是1
假设,我们想知道3在不在,那么只需判断 b[0] & (1<<3) 如果这个值是0,则不存在,如果是1,就表示存在
Bitmap有什么用
大量数据的快速排序、查找、去重
快速排序
假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复),我们就可以采用Bit-map的方法来达到排序的目的。
要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0,然后将对应位置为1。
最后,遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的,时间复杂度O(n)。
优点:
运算效率高,不需要进行比较和移位;
占用内存少,比如N=10000000;只需占用内存为N/8=1250000Byte=1.25M
缺点:
所有的数据不能重复。即不可对重复的数据进行排序和查找。
只有当数据比较密集时才有优势
快速去重
20亿个整数中找出不重复的整数的个数,内存不足以容纳这20亿个整数。
首先,根据“内存空间不足以容纳这05亿个整数”我们可以快速的联想到Bit-map。下边关键的问题就是怎么设计我们的Bit-map来表示这20亿个数字的状态了。其实这个问题很简单,一个数字的状态只有三种,分别为不存在,只有一个,有重复。因此,我们只需要2bits就可以对一个数字的状态进行存储了,假设我们设定一个数字不存在为00,存在一次01,存在两次及其以上为11。那我们大概需要存储空间2G左右。
接下来的任务就是把这20亿个数字放进去(存储),如果对应的状态位为00,则将其变为01,表示存在一次;如果对应的状态位为01,则将其变为11,表示已经有一个了,即出现多次;如果为11,则对应的状态位保持不变,仍表示出现多次。
最后,统计状态位为01的个数,就得到了不重复的数字个数,时间复杂度为O(n)。
快速查找
这就是我们前面所说的了,int数组中的一个元素是4字节占32位,那么除以32就知道元素的下标,对32求余数(%32)就知道它在哪一位,如果该位是1,则表示存在。
小结&回顾
Bitmap主要用于快速检索关键字状态,通常要求关键字是一个连续的序列(或者关键字是一个连续序列中的大部分), 最基本的情况,使用1bit表示一个关键字的状态(可标示两种状态),但根据需要也可以使用2bit(表示4种状态),3bit(表示8种状态)。
Bitmap的主要应用场合:表示连续(或接近连续,即大部分会出现)的关键字序列的状态(状态数/关键字个数 越小越好)。
32位机器上,对于一个整型数,比如int a=1 在内存中占32bit位,这是为了方便计算机的运算。但是对于某些应用场景而言,这属于一种巨大的浪费,因为我们可以用对应的32bit位对应存储十进制的0-31个数,而这就是Bit-map的基本思想。Bit-map算法利用这种思想处理大量数据的排序、查询以及去重。
补充1
在数字没有溢出的前提下,对于正数和负数,左移一位都相当于乘以2的1次方,左移n位就相当于乘以2的n次方,右移一位相当于除2,右移n位相当于除以2的n次方。
<< 左移,相当于乘以2的n次方,例如:1<<6 相当于1×64=64,3<<4 相当于3×16=48
>> 右移,相当于除以2的n次方,例如:64>>3 相当于64÷8=8
^ 异或,相当于求余数,例如:48^32 相当于 48%32=16
补充2
不使用第三方变量,交换两个变量的值
// 方式一
a = a + b;
b = a - b;
a = a - b;
// 方式二
a = a ^ b;
b = a ^ b;
a = a ^ b;
BitSet
BitSet实现了一个位向量,它可以根据需要增长。每一位都有一个布尔值。一个BitSet的位可以被非负整数索引(PS:意思就是每一位都可以表示一个非负整数)。可以查找、设置、清除某一位。通过逻辑运算符可以修改另一个BitSet的内容。默认情况下,所有的位都有一个默认值false。
可以看到,跟我们前面想的差不多
在公众号顶级架构师后台回复“架构整洁”,获取一份惊喜礼包。
用一个long数组来存储,初始长度64,set值的时候首先右移6位(相当于除以64)计算在数组的什么位置,然后更改状态位
别的看不懂不要紧,看懂这两句就够了:
int wordIndex = wordIndex(bitIndex);
words[wordIndex] |= (1L << bitIndex);
Bloom Filters
Bloom filter 是一个数据结构,它可以用来判断某个元素是否在集合内,具有运行快速,内存占用小的特点。
而高效插入和查询的代价就是,Bloom Filter 是一个基于概率的数据结构:它只能告诉我们一个元素绝对不在集合内或可能在集合内。
Bloom filter 的基础数据结构是一个 比特向量(可理解为数组)。
主要应用于大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等
如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(哈希表)等等数据结构都是这种思路,但是随着集合中元素的增加,需要的存储空间越来越大;同时检索速度也越来越慢,检索时间复杂度分别是O(n)、O(log n)、O(1)。
布隆过滤器的原理是,当一个元素被加入集合时,通过 K 个散列函数将这个元素映射成一个位数组(Bit array)中的 K 个点,把它们置为 1 。检索时,只要看看这些点是不是都是1就知道元素是否在集合中;如果这些点有任何一个 0,则被检元素一定不在;如果都是1,则被检元素很可能在(之所以说“可能”是误差的存在)。
BloomFilter 流程
1、 首先需要 k 个 hash 函数,每个函数可以把 key 散列成为 1 个整数;
2、初始化时,需要一个长度为 n 比特的数组,每个比特位初始化为 0;
3、某个 key 加入集合时,用 k 个 hash 函数计算出 k 个散列值,并把数组中对应的比特位置为 1;
4、判断某个 key 是否在集合时,用 k 个 hash 函数计算出 k 个散列值,并查询数组中对应的比特位,如果所有的比特位都是1,认为在集合中。
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>28.1-jre</version>
</dependency>
PS:欢迎在留言区留下你的观点,一起讨论提高。如果今天的文章让你有新的启发,欢迎转发分享给更多人。
猜你还想看
SpringBoot:切面AOP实现权限校验:实例演示与注解全解
嘿,你在看吗?