在进行图像处理时一点要注意 各个库之间的细微差异,还有要注意图像放缩时插值方法的选择,而且即使是相同的插值方法,各个库的实现也不同,结果也会有些许差异
PIL(RGB)首先介绍PIL(Python Imaging Library)这个库,这是Python中最基础的图像处理库,主要注意对图片进行处理时w,h的变化.
from PIL import Image import numpy as np image = Image.open('test.jpg') # 图片是400x300 宽x高 print type(image) # out: PIL.JpegImagePlugin.JpegImageFile print image.size # out: (400,300) print image.mode # out: 'RGB' print image.getpixel((0,0)) # out: (143, 198, 201) # resize w*h image = image.resize((200,100),Image.NEAREST) print image.size # out: (200,100) ''' 代码解释 **注意image是 class:`~PIL.Image.Image` object**,它有很多属性,比如它的size是(w,h),通道是RGB,,他也有很多方法,比如获取getpixel((x,y))某个位置的像素,得到三个通道的值,x最大可取w-1,y最大可取h-1 比如resize方法,可以实现图片的放缩,具体参数如下 resize(self, size, resample=0) method of PIL.Image.Image instance Returns a resized copy of this image. :param size: The requested size in pixels, as a 2-tuple: (width, height). 注意size是 (w,h),和原本的(w,h)保持一致 :param resample: An optional resampling filter. This can be one of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BOX`, :py:attr:`PIL.Image.BILINEAR`, :py:attr:`PIL.Image.HAMMING`, :py:attr:`PIL.Image.BICUBIC` or :py:attr:`PIL.Image.LANCZOS`. If omitted, or if the image has mode "1" or "P", it is set :py:attr:`PIL.Image.NEAREST`. See: :ref:`concept-filters`. 注意这几种插值方法,默认NEAREST最近邻(分割常用),分类常用BILINEAR双线性,BICUBIC立方 :returns: An :py:class:`~PIL.Image.Image` object. ''' image = np.array(image,dtype=np.float32) # image = np.array(image)默认是uint8 print image.shape # out: (100, 200, 3) # 神奇的事情发生了,w和h换了,变成(h,w,c)了 # 注意ndarray中是 行row x 列col x 维度dim 所以行数是高,列数是宽Skimage(RGB)
import skimage from skimage import io,transform import numpy as np image= io.imread('test.jpg',as_grey=False) # 第一个参数是文件名可以是网络地址,第二个参数默认为False,True时为灰度图 print type(image) # out: numpy.ndarray print image.dtype # out: dtype('uint8') print image.shape # out: (300, 400, 3) (h,w,c)前面介绍了ndarray的特点 # mode也是RGB print image ''' 注意此时image里都是整数uint8,范围[0-255] array([ [ [143, 198, 201 (dim=3)],[143, 198, 201],... (w=200)], [ [143, 198, 201],[143, 198, 201],... ], ...(h=100) ], dtype=uint8) ''' image= io.imread('test.jpg',as_grey=True) print image.shape # out: (300, 400) print image ''' 此时image范围变为[0-1] array([[ 0.73148549, 0.73148549, 0.73148549, ..., 0.73148549, 0.73148549, 0.73148549], [ 0.73148549, 0.73148549, 0.73148549, ..., 0.73148549, .....]]) ''' print image.dtype # out: dtype('float64') image = io.imread('test.jpg',as_grey=False) # h*w image = transform.resize(image,(100, 200),order=1) # order默认是1,双线性 #resize后image范围又变成[0-1] print image.dtype # out: dtype('float64') print image.shape # out: (100, 200, 3) print image ''' array([[[ 0.56078431, 0.77647059, 0.78823529], [ 0.56078431, 0.77647059, 0.78823529], [ 0.56078431, 0.77647059, 0.78823529], ..., ...]]) ''' ''' resize函数接口 resize(image, output_shape, order=1, mode='constant', cval=0, clip=True, preserve_range=False) order : int, optional The order of interpolation. The order has to be in the range 0-5: - 0: Nearest-neighbor - 1: Bi-linear (default) - 2: Bi-quadratic - 3: Bi-cubic - 4: Bi-quartic - 5: Bi-quintic ''' print skimage.img_as_float(image).dtype # out: float64 # img_as_float可以把image转为double,即float64OpenCV(python版)(BGR)
import cv2 import numpy as np image = cv2.imread('test.jpg') print type(image) # out: numpy.ndarray print image.dtype # out: dtype('uint8') print image.shape # out: (300, 400, 3) (h,w,c) 和skimage类似 print image # BGR ''' array([ [ [143, 198, 201 (dim=3)],[143, 198, 201],... (w=200)], [ [143, 198, 201],[143, 198, 201],... ], ...(h=100) ], dtype=uint8) ''' # w*h image = cv2.resize(image,(100,200),interpolation=cv2.INTER_LINEAR) print image.dtype # out: dtype('uint8') print image.shape # out: (200, 100, 3) ''' 注意注意注意 和skimage不同 resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) 关键字参数为dst,fx,fy,interpolation dst为缩放后的图像 dsize为(w,h),但是image是(h,w,c) fx,fy为图像x,y方向的缩放比例, interplolation为缩放时的插值方式,有三种插值方式: cv2.INTER_AREA:使用象素关系重采样。当图像缩小时候,该方法可以避免波纹出现。当图像放大时,类似于 CV_INTER_NN方法 cv2.INTER_CUBIC: 立方插值 cv2.INTER_LINEAR: 双线形插值 cv2.INTER_NN: 最近邻插值 [详细可查看该博客](http://www.tuicool.com/articles/rq6fIn) ''' ''' cv2.imread(filename, flags=None): flag: cv2.IMREAD_COLOR 1: Loads a color image. Any transparency of image will be neglected. It is the default flag. 正常的3通道图 cv2.IMREAD_GRAYSCALE 0: Loads image in grayscale mode 单通道灰度图 cv2.IMREAD_UNCHANGED -1: Loads image as such including alpha channel 4通道图 注意: 默认应该是cv2.IMREAD_COLOR,如果你cv2.imread('gray.png'),虽然图片是灰度图,但是读入后会是3个通道值一样的3通道图片 '''