import numpyimport torchvisionfrom PIL import Imagefrom torchvision import transforms mobile_net=torchvision.models.mobilenet_v2(pretrained=True)image=Image.open("/home/chenyang/PycharmProjects/Attention_analysis_system/timg.jpeg").convert('RGB')normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])input_size = 224t=transforms.Compose([ transforms.RandomResizedCrop(input_size, scale=(0.2, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])image=t(image)if __name__ == '__main__': result=mobile_net(image.view(-1,3,224, 224)) result=numpy.argmax(result.data[0].numpy()) print(result)