Python编程学习圈 1周前

Python中的协程

简介

协程,又称微线程,协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。


协程,又称微线程,纤程。英文名Coroutine。协程的概念很早就提出来了,但直到最近几年才在某些语言(如Lua)中得到广泛应用。

子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在执行过程中又调用了C,C执行完毕返回,B执行完毕返回,最后是A执行完毕。

所以子程序调用是通过栈实现的,一个线程就是执行一个子程序。

子程序调用总是一个入口,一次返回,调用顺序是明确的。而协程的调用和子程序不同。

协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。

注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。比如子程序A、B:

def A():    print('1')    print('2')    print('3')def B():    print('x')    print('y')    print('z')

假设由协程执行,在执行A的过程中,可以随时中断,去执行B,B也可能在执行过程中中断再去执行A,结果可能是:

12xy3z

但是在A中是没有调用B的,所以协程的调用比函数调用理解起来要难一些。

看起来A、B的执行有点像多线程,但协程的特点在于是一个线程执行,那和多线程比,协程有何优势?

最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。

第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。

因为协程是一个线程执行,那怎么利用多核CPU呢?最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。

Python对协程的支持是通过generator实现的。

在generator中,我们不但可以通过for循环来迭代,还可以不断调用next()函数获取由yield语句返回的下一个值。

但是Python的yield不但可以返回一个值,它还可以接收调用者发出的参数。

来看例子:

传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。

如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高:

def consumer():    r = ''    while True:        n = yield r        if not n:            return        print('[CONSUMER] Consuming %s...' % n)        r = '200 OK'def produce(c):    c.send(None)    n = 0    while n < 5:        n = n + 1        print('[PRODUCER] Producing %s...' % n)        r = c.send(n)        print('[PRODUCER] Consumer return: %s' % r)    c.close()c = consumer()produce(c)

执行结果:

[PRODUCER] Producing 1...[CONSUMER] Consuming 1...[PRODUCER] Consumer return: 200 OK[PRODUCER] Producing 2...[CONSUMER] Consuming 2...[PRODUCER] Consumer return: 200 OK[PRODUCER] Producing 3...[CONSUMER] Consuming 3...[PRODUCER] Consumer return: 200 OK[PRODUCER] Producing 4...[CONSUMER] Consuming 4...[PRODUCER] Consumer return: 200 OK[PRODUCER] Producing 5...[CONSUMER] Consuming 5...[PRODUCER] Consumer return: 200 OK

注意到consumer函数是一个generator,把一个consumer传入produce后:

首先调用c.send(None)启动生成器;

然后,一旦生产了东西,通过c.send(n)切换到consumer执行;

consumer通过yield拿到消息,处理,又通过yield把结果传回;

produce拿到consumer处理的结果,继续生产下一条消息;

produce决定不生产了,通过c.close()关闭consumer,整个过程结束。

整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。

最后套用Donald Knuth的一句话总结协程的特点:

“子程序就是协程的一种特例。”

Python中的异步编程asyncio

简介

asyncio的编程模型就是一个消息循环。我们从asyncio模块中直接获取一个EventLoop的引用,然后把需要执行的协程扔到EventLoop中执行,就实现了异步IO。


asyncio是Python 3.4版本引入的标准库,直接内置了对异步IO的支持。

asyncio的编程模型就是一个消息循环。我们从asyncio模块中直接获取一个EventLoop的引用,然后把需要执行的协程扔到EventLoop中执行,就实现了异步IO。

用asyncio实现Hello world代码如下:

import asyncio@asyncio.coroutinedef hello():    print("Hello world!")    # 异步调用asyncio.sleep(1):    r = yield from asyncio.sleep(1)    print("Hello again!")# 获取EventLoop:loop = asyncio.get_event_loop()# 执行coroutineloop.run_until_complete(hello())loop.close()

@asyncio.coroutine把一个generator标记为coroutine类型,然后,我们就把这个coroutine扔到EventLoop中执行。

hello()会首先打印出Hello world!,然后,yield from语法可以让我们方便地调用另一个generator。由于asyncio.sleep()也是一个coroutine,所以线程不会等待asyncio.sleep(),而是直接中断并执行下一个消息循环。当asyncio.sleep()返回时,线程就可以从yield from拿到返回值(此处是None),然后接着执行下一行语句。

把asyncio.sleep(1)看成是一个耗时1秒的IO操作,在此期间,主线程并未等待,而是去执行EventLoop中其他可以执行的coroutine了,因此可以实现并发执行。

我们用Task封装两个coroutine试试:

import threadingimport asyncio@asyncio.coroutinedef hello():    print('Hello world! (%s)' % threading.currentThread())    yield from asyncio.sleep(1)    print('Hello again! (%s)' % threading.currentThread())loop = asyncio.get_event_loop()tasks = [hello(), hello()]loop.run_until_complete(asyncio.wait(tasks))loop.close()

观察执行过程:

Hello world! (<_MainThread(MainThread, started 140735195337472)>)Hello world! (<_MainThread(MainThread, started 140735195337472)>)

(暂停约1秒)

Hello again! (<_MainThread(MainThread, started 140735195337472)>)Hello again! (<_MainThread(MainThread, started 140735195337472)>)

由打印的当前线程名称可以看出,两个coroutine是由同一个线程并发执行的。

如果把asyncio.sleep()换成真正的IO操作,则多个coroutine就可以由一个线程并发执行。

我们用asyncio的异步网络连接来获取sina、sohu和163的网站首页:

import asyncio@asyncio.coroutinedef wget(host):    print('wget %s...' % host)    connect = asyncio.open_connection(host, 80)    reader, writer = yield from connect    header = 'GET / HTTP/1.0\r\nHost: %s\r\n\r\n' % host    writer.write(header.encode('utf-8'))    yield from writer.drain()    while True:        line = yield from reader.readline()        if line == b'\r\n':            break        print('%s header > %s' % (host, line.decode('utf-8').rstrip()))    # Ignore the body, close the socket    writer.close()loop = asyncio.get_event_loop()tasks = [wget(host) for host in ['www.sina.com.cn', 'www.sohu.com', 'www.163.com']]loop.run_until_complete(asyncio.wait(tasks))loop.close()

执行结果如下:

wget www.sohu.com...wget www.sina.com.cn...wget www.163.com...(等待一段时间)(打印出sohu的header)www.sohu.com header > HTTP/1.1 200 OKwww.sohu.com header > Content-Type: text/html...(打印出sina的header)www.sina.com.cn header > HTTP/1.1 200 OKwww.sina.com.cn header > Date: Wed, 20 May 2015 04:56:33 GMT...(打印出163的header)www.163.com header > HTTP/1.0 302 Moved Temporarilywww.163.com header > Server: Cdn Cache Server V2.0...

可见3个连接由一个线程通过coroutine并发完成。

asyncio提供了完善的异步IO支持;异步操作需要在coroutine中通过yield from完成;

多个coroutine可以封装成一组Task然后并发执行。

asyncio中的async和await

简介

async和await是针对coroutine的新语法,asyncio提供的@asyncio.coroutine可以把一个generator标记为coroutine类型,然后在coroutine内部用yield from调用另一个coroutine实现异步操作。


用asyncio提供的@asyncio.coroutine可以把一个generator标记为coroutine类型,然后在coroutine内部用yield from调用另一个coroutine实现异步操作。

为了简化并更好地标识异步IO,从Python 3.5开始引入了新的语法async和await,可以让coroutine的代码更简洁易读。

请注意,async和await是针对coroutine的新语法,要使用新的语法,只需要做两步简单的替换:

把@asyncio.coroutine替换为async;

把yield from替换为await。

让我们对比一下上一节的代码:

@asyncio.coroutinedef hello():    print("Hello world!")    r = yield from asyncio.sleep(1)    print("Hello again!")

用新语法重新编写如下:

async def hello():    print("Hello world!")    r = await asyncio.sleep(1)    print("Hello again!")

剩下的代码保持不变。

Python从3.5版本开始为asyncio提供了async和await的新语法;

注意新语法只能用在Python 3.5以及后续版本,如果使用3.4版本,则仍需使用上一节的方案。

Python中服务端的异步IO

简介

asyncio可以实现单线程并发IO操作。如果把asyncio用在服务器端,由于HTTP连接就是IO操作,因此可以用单线程+coroutine实现多用户的高并发支持。asyncio实现了TCP、UDP、SSL等协议,aiohttp则是基于asyncio实现的HTTP框架。


asyncio可以实现单线程并发IO操作。如果仅用在客户端,发挥的威力不大。如果把asyncio用在服务器端,例如Web服务器,由于HTTP连接就是IO操作,因此可以用单线程+coroutine实现多用户的高并发支持。

asyncio实现了TCP、UDP、SSL等协议,aiohttp则是基于asyncio实现的HTTP框架。

我们先安装aiohttp:

pip install aiohttp

然后编写一个HTTP服务器,分别处理以下URL:

/ - 首页返回b'<h1>Index</h1>';
/hello/{name} - 根据URL参数返回文本hello, %s!。

代码如下:

import asynciofrom aiohttp import webasync def index(request):    await asyncio.sleep(0.5)    return web.Response(body=b'<h1>Index</h1>')async def hello(request):    await asyncio.sleep(0.5)    text = '<h1>hello, %s!</h1>' % request.match_info['name']    return web.Response(body=text.encode('utf-8'))async def init(loop):    app = web.Application(loop=loop)    app.router.add_route('GET', '/', index)    app.router.add_route('GET', '/hello/{name}', hello)    srv = await loop.create_server(app.make_handler(), '127.0.0.1', 8000)    print('Server started at http://127.0.0.1:8000...')    return srvloop = asyncio.get_event_loop()loop.run_until_complete(init(loop))loop.run_forever()

注意aiohttp的初始化函数init()也是一个coroutine,loop.create_server()则利用asyncio创建TCP服务。