对于我们的android平台,控制台被定义到了串口1上,因此初始化过程就是把控制台的输出配置到串口1上
对kernel控制台初始化是在挂载文件系统之前,由于没有串口的设备文件,不能通过打开设备文件来访问串口,只能直接访问硬件,更类似与裸机的访问方式。
下面正式来看
板子初始化的过程
android\kernel_imx\arch\arm\mach-mx6\board-mx6q_sabresd.c
MACHINE_START(MX6Q_SABRESD, "Freescale i.MX 6Quad/DualLite/Solo Sabre-SD Board") /* Maintainer: Freescale Semiconductor, Inc. */ .boot_params = MX6_PHYS_OFFSET + 0x100, .fixup = fixup_mxc_board, .map_io = mx6_map_io, .init_irq = mx6_init_irq, .init_machine = mx6_sabresd_board_init, .timer = &mx6_sabresd_timer, .reserve = mx6q_sabresd_reserve, MACHINE_END
这其中有个时钟初始化mx6_sabresd_timer我们来看它的定义
static struct sys_timer mx6_sabresd_timer = { .init = mx6_sabresd_timer_init, }; static void __init mx6_sabresd_timer_init(void) { struct clk *uart_clk; #ifdef CONFIG_LOCAL_TIMERS twd_base = ioremap(LOCAL_TWD_ADDR, SZ_256); BUG_ON(!twd_base); #endif mx6_clocks_init(32768, 24000000, 0, 0); uart_clk = clk_get_sys("imx-uart.0", NULL); early_console_setup(UART1_BASE_ADDR, uart_clk); }
可以看到这里调用了early_console_setup(UART1_BASE_ADDR, uart_clk);
这个函数就是文件系统挂载之前控制台的初始化函数。下面我就开始分析这个函数
android\kernel_imx\arch\arm\plat-mxc\cpu.c
/** * early_console_setup - setup debugging console * * Consoles started here require little enough setup that we can start using * them very early in the boot process, either right after the machine * vector initialization, or even before if the drivers can detect their hw. * * Returns non-zero if a console couldn't be setup. * This function is developed based on * early_console_setup function as defined in arch/ia64/kernel/setup.c * 这个注释里写的很清楚,在设备驱动执行之前,为了调试错误的需要我们 * 需要在启动的最初就初始化控制台 */ void __init early_console_setup(unsigned long base, struct clk *clk) { #ifdef CONFIG_SERIAL_IMX_CONSOLE mxc_early_serial_console_init(base, clk); #endif } 这里调用mxc_early_serial_console_init(base, clk); android\kernel_imx\drivers\tty\serial、mxc_uart_early.c int __init mxc_early_serial_console_init(unsigned long base, struct clk *clk) { mxc_early_device.clk = clk; mxc_early_device.port.mapbase = base; register_console(&mxc_early_uart_console); return 0; }
这里可以看到register_console(&mxc_early_uart_console);就是注册一个设备到控制台中,
在最开始注册的这个设备肯定是裸机的访问方式的,因此我们重点来看这个设备
static struct console mxc_early_uart_console __initdata = { .name = "ttymxc", .write = early_mxcuart_console_write, .setup = mxc_early_uart_setup, .flags = CON_PRINTBUFFER | CON_BOOT, .index = -1, };
这个设备提供的设备访问接口
.write = early_mxcuart_console_write,是串口的发送函数
.setup = mxc_early_uart_setup,是串口的初始化函数
.flags = CON_PRINTBUFFER | CON_BOOT,是控制台标志,CON_BOOT表明这事一个boot的控制台设备
也就是说是挂载设备文件之前的控制台设备
下面我们来分析初始化函数和 数据发送函数
初始化函数
static int __init mxc_early_uart_setup(struct console *console, char *options) { struct mxc_early_uart_device *device = &mxc_early_device; struct uart_port *port = &device->port; int length; if (device->port.membase || device->port.iobase) return -ENODEV; /* Enable Early MXC UART Clock */ clk_enable(device->clk);//初始化总线时钟 port->uartclk = 5600000; port->iotype = UPIO_MEM; port->membase = ioremap(port->mapbase, SZ_4K);//串口寄存器内存映射 if (options) { device->baud = simple_strtoul(options, NULL, 0); length = min(strlen(options), sizeof(device->options)); strncpy(device->options, options, length); } else { device->baud = probe_baud(port); snprintf(device->options, sizeof(device->options), "%u", device->baud); } printk(KERN_INFO "MXC_Early serial console at MMIO 0x%x (options '%s')\n", port->mapbase, device->options); return 0; }
其实从这个初始化函数里看出,它做了很多向mxc_early_device结构体中填入数据的工作,而这些数据
找遍所有代码也没有用到,因此这些事没有意义的,官方代码给的这点并不太好。但是由于uboot中我们已经初始化了
串口因此这里就算没有任何初始化其实串口也可以是使用。
这里真正有用的就两句话
clk_enable(device->clk);//初始化总线时钟
port->membase = ioremap(port->mapbase, SZ_4K);//串口寄存器内存映射
但是在寄存器映射结束后没有进行任何串口寄存器初始化,这也很奇怪,我们仔细查找发现,
寄存器初始化代码写在了数据发送函数里,具体为什么我们来分析发送函数
early_mxcuart_console_write
/*! * This function is called to write the console messages through the UART port. * * @param co the console structure * @param s the log message to be written to the UART * @param count length of the message */ void __init early_mxcuart_console_write(struct console *co, const char *s, u_int count) { struct uart_port *port = &mxc_early_device.port; unsigned int status, oldcr1, oldcr2, oldcr3, cr2, cr3; /* * First save the control registers and then disable the interrupts */ oldcr1 = readl(port->membase + MXC_UARTUCR1); //读取当前三个串口控制寄存器的值 oldcr2 = readl(port->membase + MXC_UARTUCR2); oldcr3 = readl(port->membase + MXC_UARTUCR3); cr2 = oldcr2 & ~(MXC_UARTUCR2_ATEN | MXC_UARTUCR2_RTSEN | //初始化串口寄存器数值 MXC_UARTUCR2_ESCI); cr3 = oldcr3 & ~(MXC_UARTUCR3_DCD | MXC_UARTUCR3_RI | MXC_UARTUCR3_DTRDEN); writel(MXC_UARTUCR1_UARTEN, port->membase + MXC_UARTUCR1); //使能串口 writel(cr2, port->membase + MXC_UARTUCR2); //配置寄存器 writel(cr3, port->membase + MXC_UARTUCR3); /* Transmit string */ uart_console_write(port, s, count, mxcuart_console_write_char); //发送数据 /* * Finally, wait for the transmitter to become empty等待发送完成 */ do { status = readl(port->membase + MXC_UARTUSR2); } while (!(status & MXC_UARTUSR2_TXDC)); /* * Restore the control registers */ writel(oldcr1, port->membase + MXC_UARTUCR1);//恢复串口寄存器数值 writel(oldcr2, port->membase + MXC_UARTUCR2); writel(oldcr3, port->membase + MXC_UARTUCR3); }
从这个函数看书,它首先保存了串口控制寄存器的值,然后初始化成符合控制台的,发送完数据后,又恢复了原来的数据
这样做的目的就是,如果我们加载了串口的驱动,那么很有可能打乱了控制台的配置,而系统启动以后
我们还不能动串口驱动的配置,因此最好的办法就是,每次发送数据都重新配置串口,发送完后再恢复以前的配置。
到了这里控制台初始化的第一部分已经完成了。我们可以知道没有文件系统,控制台是怎么工作的。