Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms: 
1. All of the teams solve at least one problem. 
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems. 

Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem. 

Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems? 

Input

The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

Output

For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

Sample Input

2 2 2
0.9 0.9
1 0.9
0 0 0

Sample Output

0.972

题意+题解
ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率
问 每队至少解出一题且冠军队至少解出N道题的概率。

解析:DP
设dp[i][j][k]表示第i个队在前j道题中解出k道的概率
则:
dp[i][j][k]=dp[i][j-1][k-1]*p[j][k]+dp[i][j-1][k]*(1-p[j][k]);
先初始化算出dp[i][0][0]和dp[i][j][0];
设s[i][k]表示第i队做出的题小于等于k的概率
则s[i][k]=dp[i][M][0]+dp[i][M][1]+``````+dp[i][M][k];

则每个队至少做出一道题概率为P1=(1-s[1][0])*(1-s[2][0])*```(1-s[T][0]);
每个队做出的题数都在1~N-1的概率为P2=(s[1][N-1]-s[1][0])*(s[2][N-1]-s[2][0])*```(s[T][N-1]-s[T][0]);

最后的答案就是P1-P2

每个队至少做出一道题的概率-p2,就是减法原理,意思就是去除了全是1-(n-1)的情况,然后就是
赢的队至少解出了n道题。
 1 #include<cstdio>
 2 #include<cmath>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<iostream>
 6 #define N 1007
 7 #define M 57
 8 using namespace std;
 9 
10 int m,n,t;
11 double f[N][M][M],z[N][M],gx[N][M];
12 
13 
14 int main()
15 {
16     while(~scanf("%d%d%d",&m,&t,&n)&&(n+m+t))
17     {
18         for (int i=1;i<=t;i++)
19             for (int j=1;j<=m;j++)
20                 scanf("%lf",&z[i][j]);
21         memset(f,0,sizeof(f)),memset(gx,0,sizeof(gx));        
22         for (int i=1;i<=t;i++)
23         {
24             f[i][0][0]=1;
25             for (int j=1;j<=m;j++)
26                 f[i][j][0]=f[i][j-1][0]*(1-z[i][j]);
27             for (int j=1;j<=m;j++)
28                 for (int k=1;k<=j;k++)
29                     f[i][j][k]=f[i][j-1][k-1]*z[i][j]+f[i][j-1][k]*(1-z[i][j]);
30             gx[i][0]=f[i][m][0];
31             for (int j=1;j<=m;j++)
32                 gx[i][j]=gx[i][j-1]+f[i][m][j];    
33         }
34         double ans1,ans2;
35         ans1=ans2=1;
36         for (int i=1;i<=t;i++)
37         {
38             ans1=ans1*(1-gx[i][0]);
39             ans2=ans2*(gx[i][n-1]-gx[i][0]);
40         }
41         printf("%.3f\n",ans1-ans2);
42     }
43 }