Description
A simple cycle is a closed simple path, with no other repeated vertices or edges other than the starting and ending vertices. The length of a cycle is the number of vertices on it. Given an undirected graph G(V, E), you are to detect whether it contains a simple cycle of length K. To make the problem easier, we only consider cases with small K here.
Input
There are multiple test cases.
The first line will contain a positive integer T (T ≤ 10) meaning the number of test cases.
For each test case, the first line contains three positive integers N, M and K ( N ≤ 50, M ≤ 500, 3 ≤ K ≤ 7). N is the number of vertices of the graph, M is the number of edges and K is the length of the cycle desired. Next follow M lines, each line contains
two integers A and B, describing an undirected edge AB of the graph. Vertices are numbered from 0 to N-1.
Output
For each test case, you should output “YES” in one line if there is a cycle of length K in the given graph, otherwise output “NO”.
Sample Input
2
6 8 4
0 1
1 2
2 0
3 4
4 5
5 3
1 3
2 4
4 4 3
0 1
1 2
2 3
3 0
Sample Output
YES
NO
HINT
Source
#include <iostream> #include <stdio.h> #include <string.h> #include <string> #include <stack> #include <queue> #include <map> #include <set> #include <vector> #include <math.h> #include <bitset> #include <list> #include <algorithm> #include <climits> using namespace std; #define lson 2*i #define rson 2*i+1 #define LS l,mid,lson #define RS mid+1,r,rson #define UP(i,x,y) for(i=x;i<=y;i++) #define DOWN(i,x,y) for(i=x;i>=y;i--) #define MEM(a,x) memset(a,x,sizeof(a)) #define W(a) while(a) #define gcd(a,b) __gcd(a,b) #define LL long long #define N 200005 #define INF 0x3f3f3f3f #define EXP 1e-8 #define lowbit(x) (x&-x) const int mod = 1e9+7; vector<int> a[550]; int vis[550],flag; int n,m,k; void dfs(int now,int pos,int pre) { if(vis[now]) { if(pos-vis[now]==k) flag = 1; return; } if(flag) return; vis[now]=pos; int i,len = a[now].size(); for(i = 0; i<len; i++) { if(a[now][i]!=pre) dfs(a[now][i],pos+1,now); } } int main() { int i,j,x,y,t; scanf("%d",&t); while(t--) { scanf("%d%d%d",&n,&m,&k); for(i = 0; i<=n; i++) a[i].clear(); flag = 0; while(m--) { scanf("%d%d",&x,&y); a[x].push_back(y); a[y].push_back(x); } for(i=0; i<n; i++) { MEM(vis,0); dfs(i,1,-1); } printf("%s\n",flag?"YES":"NO"); } return 0; }