描述
Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.
Now, how much qualities can you eat and then get ?
输入
There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M,N<=500.
输出
For each case, you just output the MAX qualities you can eat and then get.
样例输入
4 6
11 0 7 5 13 9
78 4 81 6 22 4
1 40 9 34 16 10
11 22 0 33 39 6
样例输出
242
思路:
考虑对于某行某列元素,row[i][j]表示加上位置为i,j的土豆的质量的i行j列最大的和
列的最大值:row[i][j]=max(row[i][j-2]+row[i][j-3])+val
看图说话:
假设红色的格子为i行j列,那么它的前面有两种选择方案:
1、选择蓝色格子
2、选择黄色格子
那么该行最大的和是什么呢?
由于n列、n-1列具有状态无关性(n-1列的状态影响不了n列的状态),很显然等于max(row[i][n],row[i][n-1])
同理对于dp[i] (i行的最大值)
dp[i]=max(dp[i-2],dp[i-3])+max_row[i]
看图说话:
max土豆质量=max(dp[m],dp[m-1])
为了方便计算,我的代码把n,m扩大了2
AC代码:
1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4 using namespace std;
5 #define N 506
6 int n,m;
7 int col[N][N];
8 int dp[N];
9 int main()
10 {
11 while(scanf("%d%d",&n,&m)==2){
12 memset(col,0,sizeof(col));
13 memset(dp,0,sizeof(dp));
14 for(int i=3;i<n+3;i++){
15 for(int j=3;j<m+3;j++){
16 int x;
17 scanf("%d",&x);
18 col[i][j] = max(col[i][j-2],col[i][j-3])+x;
19 }
20 }
21 for(int i=3;i<n+3;i++){
22 dp[i]=max(dp[i-2],dp[i-3])+max(col[i][m+1],col[i][m+2]);
23 }
24 printf("%d\n",max(dp[n+1],dp[n+2]));
25 }
26 return 0;
27 }