Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
class Solution { public: void init(vector<string> &temp, int n) { string strtemp(n,'.'); temp.insert(temp.end(),n,strtemp); return; } bool checkij(vector<string> &temp, int i, int j) { for (int ii=i-1,jleft=j-1;ii>=0&&jleft>=0;ii--,jleft--) { if(temp[ii][jleft]=='Q')return false; } for (int ii=i-1,jright=j+1;ii>=0&&jright<temp.size();ii--,jright++) { if(temp[ii][jright]=='Q')return false; } for (int k=0;k<temp.size();k++) { if (k!=j&&temp[i][k]=='Q')return false; if (k!=i&&temp[k][j]=='Q')return false; } return true; } bool solveOne(int &res,vector<string> &temp,int n, int index) { if(index==n) { res++; return true; } for (int j=0;j<n;j++) { temp[index][j]='Q'; if (checkij(temp,index,j)) { solveOne(res,temp,n,index+1); } temp[index][j]='.'; } } int totalNQueens(int n) { int res=0; vector<string> temp; init(temp,n); for(int i=0;i<n;i++) { temp[0][i]='Q'; solveOne(res,temp,n,1); temp[0][i]='.'; } return res; } };