在使用WebRTC的时候,对视频进行美颜处理一般有两种方式:替换WebRTC中的采集模块对视频数据进行美颜

一、替换WebRTC中的采集模块

替换WebRTC中的采集模块,相对比较简单,使用GPUImageVideoCamera替换WebRTC中的视频采集,得到经过GPUImage添加美颜处理后的图像,发送给WebRTC的OnFrame方法。

参考基于WebRTC框架开发的全平台推拉流SDK:​​Github​

设置美颜

- (void)setBeautyFace:(BOOL)beautyFace{
if(_beautyFace == beautyFace) return;

_beautyFace = beautyFace;
[_emptyFilter removeAllTargets];
[_filter removeAllTargets];
[_videoCamera removeAllTargets];

if(_beautyFace){
_filter = [[GPUImageBeautifyFilter alloc] init];
_emptyFilter = [[GPUImageEmptyFilter alloc] init];
}else{
_filter = [[GPUImageEmptyFilter alloc] init];
}

__weak typeof(self) _self = self;
[_filter setFrameProcessingCompletionBlock:^(GPUImageOutput *output, CMTime time) {
[_self processVideo:output];
}];
[_videoCamera addTarget:_filter];
if (beautyFace) {
[_filter addTarget:_emptyFilter];
if(_gpuImageView) [_emptyFilter addTarget:_gpuImageView];
} else {
if(_gpuImageView) [_filter addTarget:_gpuImageView];
}
}


格式转换

GPUImage处理后的Pixel格式为BGRA,当处理完成后需要转换为I420格式,用于内部处理和渲染。

WebRTC 在编码的时候使用的是NV12格式的Pixel,所以在编码的时候会进行二次格式转换

-(void) processVideo:(GPUImageOutput *)output{
rtc::CritScope cs(&cs_capture_);
if (!_isRunning) {
return;
}
@autoreleasepool {
GPUImageFramebuffer *imageFramebuffer = output.framebufferForOutput;

size_t width = imageFramebuffer.size.width;
size_t height = imageFramebuffer.size.height;
uint32_t size = width * height * 3 / 2;

if(self.nWidth != width || self.nHeight != height)
{
self.nWidth = width;
self.nHeight = height;
if(_dst)
delete[] _dst;
_dst = NULL;
}
if(_dst == NULL)
{
_dst = new uint8_t[size];
}
uint8_t* y_pointer = (uint8_t*)_dst;
uint8_t* u_pointer = (uint8_t*)y_pointer + width*height;
uint8_t* v_pointer = (uint8_t*)u_pointer + width*height/4;
int y_pitch = width;
int u_pitch = (width + 1) >> 1;
int v_pitch = (width + 1) >> 1;

libyuv::ARGBToI420([imageFramebuffer byteBuffer], width * 4, y_pointer, y_pitch, u_pointer, u_pitch, v_pointer, v_pitch, width, height);
if(self.bVideoEnable)
libyuv::I420Rect(y_pointer, y_pitch, u_pointer, u_pitch, v_pointer, v_pitch, 0, 0, width, height, 32, 128, 128);

if(_capturer != nil)
_capturer->CaptureYUVData(_dst, width, height, size);
}
}


美颜后的数据发送给WebRTC的OnFrame方法

GPUImageVideoCapturer 类为GPUImage 封装的摄像头类,跟WebRTC中的采集类功能保持一致,继承 cricket::VideoCapturer 类,便可以往WebRTC中塞入采集的音视频流。

namespace webrtc {
// 继承cricket::VideoCapturer
class GPUImageVideoCapturer : public cricket::VideoCapturer {
...
}
}
void GPUImageVideoCapturer::CaptureYUVData(const webrtc::VideoFrame& frame, int width, int height)
{
VideoCapturer::OnFrame(frame, width, height);
}


二、对视频数据进行美颜

对视频数据美颜的思路就是传统的第三方美颜SDK的做法,对内部采集的音视频数据进行处理:内部采集的数据(CVPixelBufferRef)-》转换为纹理(GLuint)-》对纹理进行音视频的美颜-》美颜的纹理转换为iOS的采集数据(CVPixelBufferRef)-》返回给WebRTC内部进行渲染编码和传输。

同步线程

内部处理的一般都是使用同步线程,这样能够保证数据线性流动,参阅GPUImage中的代码片段

 runSynchronouslyOnVideoProcessingQueue(^{
// 美颜处理
});


把CVPixelBufferRef 数据转换为纹理(GLuint)

RGB格式类型的转换方式
  • CoreVideo框架的方法:使用此方法可以创建CVOpenGLESTextureRef纹理,并通过CVOpenGLESTextureGetName(texture)获取纹理id。
    - (GLuint)convertRGBPixelBufferToTexture:(CVPixelBufferRef)pixelBuffer { if (!pixelBuffer) { return 0; } CGSize textureSize = CGSizeMake(CVPixelBufferGetWidth(pixelBuffer), CVPixelBufferGetHeight(pixelBuffer)); CVOpenGLESTextureRef texture = nil; CVReturn status = CVOpenGLESTextureCacheCreateTextureFromImage(nil, [[GPUImageContext sharedImageProcessingContext] coreVideoTextureCache], pixelBuffer, nil, GL_TEXTURE_2D, GL_RGBA, textureSize.width, textureSize.height, GL_BGRA, GL_UNSIGNED_BYTE, 0, &texture); if (status != kCVReturnSuccess) { NSLog(@"Can't create texture"); } self.renderTexture = texture; return CVOpenGLESTextureGetName(texture); }
  • OpenGL的方法:创建纹理对象,使用glTexImage2D方法上传CVPixelBufferRef中图像数据data到纹理对象中。
    glBindTexture(GL_TEXTURE_2D, [outputFramebuffer texture]); glTexImage2D(GL_TEXTURE_2D, 0, _pixelFormat==GPUPixelFormatRGB ? GL_RGB : GL_RGBA, (int)uploadedImageSize.width, (int)uploadedImageSize.height, 0, (GLint)_pixelFormat, (GLenum)_pixelType, bytesToUpload);
YUV格式类型的转换方式
- (GLuint)convertYUVPixelBufferToTexture:(CVPixelBufferRef)pixelBuffer {
if (!pixelBuffer) {
return 0;
}

CGSize textureSize = CGSizeMake(CVPixelBufferGetWidth(pixelBuffer),
CVPixelBufferGetHeight(pixelBuffer));

[EAGLContext setCurrentContext:self.context];

GLuint frameBuffer;
GLuint textureID;

// FBO
glGenFramebuffers(1, &frameBuffer);
glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);

// texture
glGenTextures(1, &textureID);
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureSize.width, textureSize.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);


glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureID, 0);

glViewport(0, 0, textureSize.width, textureSize.height);

// program
glUseProgram(self.yuvConversionProgram);

// texture
CVOpenGLESTextureRef luminanceTextureRef = nil;
CVOpenGLESTextureRef chrominanceTextureRef = nil;

CVReturn status = CVOpenGLESTextureCacheCreateTextureFromImage(kCFAllocatorDefault,
self.textureCache,
pixelBuffer,
nil,
GL_TEXTURE_2D,
GL_LUMINANCE,
textureSize.width,
textureSize.height,
GL_LUMINANCE,
GL_UNSIGNED_BYTE,
0,
&luminanceTextureRef);
if (status != kCVReturnSuccess) {
NSLog(@"Can't create luminanceTexture");
}

status = CVOpenGLESTextureCacheCreateTextureFromImage(kCFAllocatorDefault,
self.textureCache,
pixelBuffer,
nil,
GL_TEXTURE_2D,
GL_LUMINANCE_ALPHA,
textureSize.width / 2,
textureSize.height / 2,
GL_LUMINANCE_ALPHA,
GL_UNSIGNED_BYTE,
1,
&chrominanceTextureRef);

if (status != kCVReturnSuccess) {
NSLog(@"Can't create chrominanceTexture");
}

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, CVOpenGLESTextureGetName(luminanceTextureRef));
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glUniform1i(glGetUniformLocation(self.yuvConversionProgram, "luminanceTexture"), 0);

glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, CVOpenGLESTextureGetName(chrominanceTextureRef));
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glUniform1i(glGetUniformLocation(self.yuvConversionProgram, "chrominanceTexture"), 1);

GLfloat kXDXPreViewColorConversion601FullRange[] = {
1.0, 1.0, 1.0,
0.0, -0.343, 1.765,
1.4, -0.711, 0.0,
};

GLuint yuvConversionMatrixUniform = glGetUniformLocation(self.yuvConversionProgram, "colorConversionMatrix");
glUniformMatrix3fv(yuvConversionMatrixUniform, 1, GL_FALSE, kXDXPreViewColorConversion601FullRange);

// VBO
glBindBuffer(GL_ARRAY_BUFFER, self.VBO);

GLuint positionSlot = glGetAttribLocation(self.yuvConversionProgram, "position");
glEnableVertexAttribArray(positionSlot);
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);

GLuint textureSlot = glGetAttribLocation(self.yuvConversionProgram, "inputTextureCoordinate");
glEnableVertexAttribArray(textureSlot);
glVertexAttribPointer(textureSlot, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3* sizeof(float)));

glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

glDeleteFramebuffers(1, &frameBuffer);

glBindFramebuffer(GL_FRAMEBUFFER, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);

glFlush();

self.luminanceTexture = luminanceTextureRef;
self.chrominanceTexture = chrominanceTextureRef;
if (luminanceTextureRef) {
CFRelease(luminanceTextureRef);
}
if (chrominanceTextureRef) {
CFRelease(chrominanceTextureRef);
}


return textureID;
}


使用GPUImageTextureInput 加载滤镜和使用GPUImageTextureOutput输出数据

    [GPUImageContext setActiveShaderProgram:nil];
GPUImageTextureInput *textureInput = [[ARGPUImageTextureInput alloc] initWithTexture:textureID size:size];
GPUImageSmoothToonFilter *filter = [[GPUImageSmoothToonFilter alloc] init];
[textureInput addTarget:filter];
GPUImageTextureOutput *textureOutput = [[GPUImageTextureOutput alloc] init];
[filter addTarget:textureOutput];
[textureInput processTextureWithFrameTime:kCMTimeZero];


得到textureOutput,即得到输出的纹理。

GPUImageTextureOutput纹理转化为CVPixelBufferRef 数据

- (CVPixelBufferRef)convertTextureToPixelBuffer:(GLuint)texture
textureSize:(CGSize)textureSize {
[EAGLContext setCurrentContext:self.context];

CVPixelBufferRef pixelBuffer = [self createPixelBufferWithSize:textureSize];
GLuint targetTextureID = [self convertRGBPixelBufferToTexture:pixelBuffer];

GLuint frameBuffer;

// FBO
glGenFramebuffers(1, &frameBuffer);
glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);

// texture
glBindTexture(GL_TEXTURE_2D, targetTextureID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureSize.width, textureSize.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, targetTextureID, 0);

glViewport(0, 0, textureSize.width, textureSize.height);

// program
glUseProgram(self.normalProgram);

// texture
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glUniform1i(glGetUniformLocation(self.normalProgram, "renderTexture"), 0);

// VBO
glBindBuffer(GL_ARRAY_BUFFER, self.VBO);

GLuint positionSlot = glGetAttribLocation(self.normalProgram, "position");
glEnableVertexAttribArray(positionSlot);
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);

GLuint textureSlot = glGetAttribLocation(self.normalProgram, "inputTextureCoordinate");
glEnableVertexAttribArray(textureSlot);
glVertexAttribPointer(textureSlot, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3* sizeof(float)));

glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

glDeleteFramebuffers(1, &frameBuffer);

glBindFramebuffer(GL_FRAMEBUFFER, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);

glFlush();

return pixelBuffer;
}


把美颜后的CVPixelBufferRef同步返回给SDK,进行渲染传输。

三、总结

对音视频的美颜,已经成为了音视频应用的常用功能,除了上述两种做法外,还可以使用第三方美颜,一般音视频厂商都有提供自采集功能,而第三方美颜功能则提供有采集美颜相机功能,二者正好可以无缝结合。如果自身的应用中对美颜要求不是很高,采用音视频SDK自带的美颜即可(美白、美颜、红润),如果用在娱乐场景,除了美颜,还要美型(廋脸,大眼)、贴纸(2D、3D)的,必须要集成第三方美颜SDK了。