Clarke is a patient with multiple personality disorder. One day, Clarke split into two personality a and b, they are playing a game. There is a n∗m matrix, each grid of this matrix has a number ci,j. a wants to beat b every time, so a ask you for a help. There are q operations, each of them is belonging to one of the following two types: 1. They play the game on a (x1,y1)−(x2,y2) sub matrix. They take turns operating. On any turn, the player can choose a grid which has a positive integer from the sub matrix and decrease it by a positive integer which less than or equal this grid's number. The player who can't operate is loser. a always operate first, he wants to know if he can win this game. 2. Change ci,j to b.
The first line contains a integer T(1≤T≤5), the number of test cases. For each test case: The first line contains three integers n,m,q(1≤n,m≤500,1≤q≤2∗105) Then n∗m matrix follow, the i row j column is a integer ci,j(0≤ci,j≤109) Then q lines follow, the first number is opt. if opt=1, then 4 integers x1,y1,x1,y2(1≤x1≤x2≤n,1≤y1≤y2≤m) follow, represent operation 1. if opt=2, then 3 integers i,j,b follow, represent operation 2.
For each testcase, for each operation 1, print Yes if a can win this game, otherwise print No.
1 1 2 3 1 2 1 1 1 1 2 2 1 2 1 1 1 1 1 2
Yes
No
题目要求二维的nim游戏,考虑到nim的结论是xor和为0则必败、否则必胜,那么我们只需要维护子矩阵的xor和。由于xor有前缀和性质,所以我们可以用一个二维bit来维护(1, 1)-(a, b)的矩阵的xor和,然后由sum(x2,y2) xor sum(x2,y1−1) xor sum(x1−1,y2) xor sum(x1−1,y1−1)sum(x2, y2) \ xor \ sum(x2, y1-1) \ xor \ sum(x1-1, y2) \ xor \ sum(x1-1, y1-1)sum(x2,y2) xor sum(x2,y1−1) xor sum(x1−1,y2) xor sum(x1−1,y1−1)来得到答案即可。单点修改在bit上是很容易的。
1 #pragma comment(linker, "/STACK:1024000000,1024000000") 2 #include<iostream> 3 #include<cstdio> 4 #include<cstring> 5 #include<cmath> 6 #include<math.h> 7 #include<algorithm> 8 #include<queue> 9 #include<set> 10 #include<bitset> 11 #include<map> 12 #include<vector> 13 #include<stdlib.h> 14 #include <stack> 15 using namespace std; 16 int dirx[]={0,0,-1,1}; 17 int diry[]={-1,1,0,0}; 18 #define PI acos(-1.0) 19 #define max(a,b) (a) > (b) ? (a) : (b) 20 #define min(a,b) (a) < (b) ? (a) : (b) 21 #define ll long long 22 #define eps 1e-10 23 #define MOD 1000000007 24 #define N 506 25 #define inf 1e12 26 int n,m,q; 27 int mp[N][N]; 28 int a[N][N]; 29 int main() 30 { 31 int t; 32 scanf("%d",&t); 33 while(t--){ 34 scanf("%d%d%d",&n,&m,&q); 35 for(int i=1;i<=n;i++){ 36 for(int j=1;j<=m;j++){ 37 scanf("%d",&mp[i][j]); 38 a[i][j]=a[i][j-1]^mp[i][j]; 39 } 40 } 41 for(int i=0;i<q;i++){ 42 int opt; 43 scanf("%d",&opt); 44 int x,y,z; 45 if(opt==2){ 46 scanf("%d%d%d",&x,&y,&z); 47 mp[x][y]=z; 48 for(int j=y;j<=m;j++){ 49 a[x][j]=a[x][j-1]^mp[x][j]; 50 } 51 } 52 else{ 53 int ans=0; 54 int x1,y1,x2,y2; 55 scanf("%d%d%d%d",&x1,&y1,&x2,&y2); 56 for(int j=x1;j<=x2;j++){ 57 ans=ans^(a[j][y2]^a[j][y1-1]); 58 } 59 if(ans==0){ 60 printf("No\n"); 61 } 62 else{ 63 printf("Yes\n"); 64 } 65 } 66 } 67 } 68 return 0; 69 }