一、背景

1.1 流程

  实现排序,分组拍上一篇通过Partitioner实现了。

  实现接口,自动产生接口方法,写属性,产生getter和setter,序列化和反序列化属性,写比较方法,重写toString,为了方便复制写够着方法,不过重写够着方法map里需要不停地new,发现LongWritable有set方法,text也有,可以用,产生默认够着方法。



  public void set(String account,double income,double expense,double surplus) {
this.account = account;
this.income = income;
this.expense = expense;
this.surplus = income-expense;
}


1.2 数据集

为了和上一篇保在知识上持递进,数据及换了,名字没变。

MapReduce实现手机上网日志分析(排序)_apache

  下面是输出结果,其实mr也会自动排序,不过string按字典序排序了。

MapReduce实现手机上网日志分析(排序)_序列化_02

二、理论知识

  字符串拼接,记得以前自己写过,现在拿出来看看,javascript:void(0)archive/2012/10/18/2729112.html

  简单总结扩展如下:String是final的,不能改变也不能继承,因此在每次对 String 类型进行改变的时候其实都等同于生成了一个新的 String 对象,然后将指针指向新的 String 对象,所以经常改变内容的字符串最好不要用 String ,因为每次生成对象都会对系统性能产生影响,特别当内存中无引用对象多了以后, JVM 的 GC 就会开始工作,那速度是一定会相当慢的。


 


  如果for循环1w次,这句 string += "hello";的过程相当于将原有的string变量指向的对象内容取出与"hello"作字符串相加操作再存进另一个新的String对象当中,再让string变量指向新生成的对象。反编译出的字节码文件可以很清楚地看出,每次循环会new出一个StringBuilder对象,然后进行append操作,最后通过toString方法返回String对象。也就是说这个循环执行完毕new出了10000个对象,试想一下,如果这些对象没有被回收,内存浪费不说,有可能重复使用赵成系统卡死。从上面还可以看出:string+="hello"的操作事实上会自动被JVM优化成:

  StringBuilder str = new StringBuilder(string);

  str.append("hello");

  str.toString();

  如果直接for循环里StringBuilder 的话会只是new一次。效率高。

  而StringBuffer是线程安全的,多了synchronized关键字,也就是在多线程下会顺序读取换冲刺。




三、实体类

  收入相同的话按消费从低到高,否则收入从高到低。



package cn.app.hadoop.mr.sort;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.math.BigDecimal;

import org.apache.hadoop.io.WritableComparable;
import org.apache.jasper.tagplugins.jstl.core.Out;

//Writable是序列化接口
//泛型是InfoBean,就像比较学生信息一样,成绩,性别等 ,封装在了一个bean里
//不过发现WritableComparable 有了序列化和反序列化
public class InfoBean implements WritableComparable<InfoBean>{


private String account;
//金钱类都需要BigDecimal,double顺势精度,不过不知道下边序列化咋写类型,所以先用double,估计writeUTF可以
private double income;
private double expense;
private double surplus;


public String getAccount() {
return account;
}
public void setAccount(String account) {
this.account = account;
}
public double getIncome() {
return income;
}
public void setIncome(double income) {
this.income = income;
}
public double getExpense() {
return expense;
}
public void setExpense(double expense) {
this.expense = expense;
}
public double getSurplus() {
return surplus;
}
public void setSurplus(double surplus) {
this.surplus = surplus;
}
public void readFields(DataInput in) throws IOException {
// TODO Auto-generated method stub
this.account = in.readUTF();
this.income = in.readDouble();
this.expense = in.readDouble();
this.surplus = in.readDouble();
}
public void write(DataOutput out) throws IOException {
// TODO Auto-generated method stub
out.writeUTF(account);
out.writeDouble(income);
out.writeDouble(expense);
out.writeDouble(surplus);

}

public void set(String account,double income,double expense) {
this.account = account;
this.income = income;
this.expense = expense;
this.surplus = income - expense;
}


public InfoBean() {
super();
// TODO Auto-generated constructor stub
}
@Override
public String toString() {
return "InfoBean [income=" + income + ", expense=" + expense
+ ", surplus=" + surplus + "]";
}
public int compareTo(InfoBean o) {
// TODO Auto-generated method stub
if(this.income == o.getIncome()) {
return this.expense>o.getExpense()?1:-1;
}else {
return this.income>o.getIncome()?-1:1;
}
}
}


四、第一种实现

4.1 Mapper



//第一个处理文本的话一般是LongWritable  或者object
//一行一行的文本是text
//输出的key的手机号 定位Text
//结果是DataBean 一定要实现Writable接口
public class InfoSortMapper extends Mapper<LongWritable, Text, Text, InfoBean> {


private InfoBean v = new InfoBean();
private Text k = new Text();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split("\t");
String account = fields[0];
double in = Double.parseDouble(fields[1]);
double out = Double.parseDouble(fields[2]);

//不用每次new 几遍不重写内存引用,也很站用资源
k.set(account);
v.set(account, in, out);

context.write(k, v);
}


  4.2 Reducer



public class InfoSortReducer extends Reducer<Text, InfoBean, Text, InfoBean> {

//k就是key,不需要
private InfoBean v = new InfoBean();
public void reduce(Text key, Iterable<InfoBean> value, Context context)
throws IOException, InterruptedException {
// process values
double incomeSum = 0;
double expenseSum = 0;
for (InfoBean o : value) {
incomeSum += o.getIncome();
expenseSum += o.getExpense();
}
v.set(key.toString(), incomeSum, expenseSum);
//databean会自动调用toString
context.write(key,v);
}
}


五、第二种实现

5.1 Mapper



//对 InfoBean  排序  k2就是他
public class SortMapper extends Mapper<LongWritable, Text, InfoBean, NullWritable> {


private InfoBean k = new InfoBean();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split("\t");
String account = fields[0];
double in = Double.parseDouble(fields[1]);
double out = Double.parseDouble(fields[2]);

//不用每次new 几遍不重写内存引用,也很站用资源
k.set(account, in, out);
//value必须是NullWritable.get(),NullWritable不行,提示不是变量
context.write(k, NullWritable.get());
}
}


  5.2 Reducer



//对 InfoBean  排序  k2就是他
public class SortMapper extends Mapper<LongWritable, Text, InfoBean, NullWritable> {


private InfoBean k = new InfoBean();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split("\t");
String account = fields[0];
double in = Double.parseDouble(fields[1]);
double out = Double.parseDouble(fields[2]);

//不用每次new 几遍不重写内存引用,也很站用资源
k.set(account, in, out);
//value必须是NullWritable.get(),NullWritable不行,提示不是变量
context.write(k, NullWritable.get());
}
}


六、结束语

  如果k2 v2和k4 v4,也就是mapp的输出和reducer的输出类型不一致的话必须在Main里也设置Mapper的输出,上面的第二种就是。



job.setMapOutputKeyClass(InfoBean.class);
job.setMapOutputValueClass(NullWritable.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(InfoBean.class);


  否则java里不报错,加上log4j后看到类型不匹配。


作者:​​火星十一郎​

本文版权归作者火星十一郎所有,欢迎转载和商用,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.