time limit per test

2 seconds


memory limit per test

256 megabytes


input

standard input


output

standard output


Dasha logged into the system and began to solve problems. One of them is as follows:

Given two sequences a and b of length n each you need to write a sequence c of length n, the i-th element of which is calculated as follows: ci = bi - ai.

About sequences a and b we know that their elements are in the range from l to r. More formally, elements satisfy the following conditions: l ≤ ai ≤ r and l ≤ bi ≤ r. About sequence c we know that all its elements are distinct.

Codeforces 761D - Dasha and Very Difficult Problem_贪心

Dasha wrote a solution to that problem quickly, but checking her work on the standard test was not so easy. Due to an error in the test system only the sequence a and the compressed sequence of the sequence c were known from that test.

Let's give the definition to a compressed sequence. A compressed sequence of sequence c of length n is a sequence p of length n, so that pi equals to the number of integers which are less than or equal to ci in the sequence c. For example, for the sequence c = [250, 200, 300, 100, 50] the compressed sequence will be p = [4, 3, 5, 2, 1]. Pay attention that in c all integers are distinct. Consequently, the compressed sequence contains all integers from 1 to n inclusively.

Help Dasha to find any sequence b for which the calculated compressed sequence of sequence c is correct.



Input


The first line contains three integers nlr (1 ≤ n ≤ 105, 1 ≤ l ≤ r ≤ 109) — the length of the sequence and boundaries of the segment where the elements of sequences a and b are.

The next line contains n integers a1,  a2,  ...,  an (l ≤ ai ≤ r) — the elements of the sequence a.

The next line contains n distinct integers p1,  p2,  ...,  pn (1 ≤ pi ≤ n) — the compressed sequence of the sequence c.



Output


If there is no the suitable sequence b, then in the only line print "-1".

Otherwise, in the only line print n integers — the elements of any suitable sequence b.



Examples




input

5 1 5
1 1 1 1 1
3 1 5 4 2



output

3 1 5 4 2



input

4 2 9
3 4 8 9
3 2 1 4



output

2 2 2 9



input

6 1 5
1 1 1 1 1 1
2 3 5 4 1 6



output

-1


 

 

给一个数列a,给一个数列p,已知数列p是数列c按个元素大小编号1~n后的所谓的压缩数列,求任意一个符合条件的数列b=a+c(条件:数列a、b都在某个范围内);

思路:

例如对于第二组样例,

3 4 8 9

根据 3 2 1 4的大小重排后得到

8 4 3 9 (a)

1 2 3 4 (p)

相对应的,不妨假设数列b对应的第一位为下界2,那么可知数列c的对应第一位为-6

 

8 4 3 9 (a)

1 2 3 4 (p)

-6          (c)

2           (b)

再看第二位,不妨假设b还是下界,则c为-2,-2 > -6,符合p给定的大小顺序,则可以有:

 

8 4 3 9 (a)

1 2 3 4 (p)

-6 -2        (c)

2  2      (b)

再到第三位,不妨设b还是下界,则c为-1,依然符合p的大小顺序

8  4  3  9 (a)

1  2  3  4 (p)

-6 -2 -1     (c)

2  2  2     (b)

再到第四位,设b为下界,则c为-7,这时候发现不符合顺序,那么就让c等于前一位+1

 

8   4   3   9  (a)

1   2   3   4  (p)

-6  -2  -1  0  (c)

 2   2   2   9   (b)

这时候,得到的b为9,不大于上界,符合条件,因此我们得到了一个符合条件的b:

 

 2   2   2   9   (b)

最后我们在将数列b排回3 2 1 4的顺序即可(这步很重要……在这个样例里重新排序之后没有变化,但其他样例就不一定了……)

 

3   2   1   4  (p)

 2   2   2   9   (b)

 

感觉自己写的代码一点都不优雅……(羞耻……



1 #include<cstdio>
2 int main()
3 {
4 int n,l,r,a[100000+5],temp_a[100000+5],p[100000+5],c[100000+5];
5 scanf("%d %d %d",&n,&l,&r);
6 for(int i=1;i<=n;i++) scanf("%d",&temp_a[i]);
7 for(int i=1;i<=n;i++) scanf("%d",&p[i]);
8 for(int i=1;i<=n;i++) a[ p[i] ]=temp_a[i];
9
10 //for(int i=1;i<=n;i++) printf("%d ",a[i]);printf("\n");
11
12 int now=l-a[1]-1;
13 for(int i=1;i<=n;i++)
14 {
15 if(l-a[i] > now) c[i]=(now=l-a[i]);
16 else c[i]=(now+=1);
17 if( c[i]+a[i] > r ){
18 printf("-1\n");
19 return 0;
20 }
21 }
22
23 for(int i=1;i<=n;i++){
24 if(i!=1) printf(" ");
25 printf("%d",c[p[i]]+a[p[i]]);
26 }
27 printf("\n");
28 return 0;
29 }


 


 

 ​