# -*- coding: utf-8 -*- # Time : 2016/11/28 15:14 # Author : XiaoDeng # version : python3.5 # Software: PyCharm Community Edition import pandas as pd import numpy as np import matplotlib.pyplot as plt obj=pd.Series(np.arange(4.),index=['a','b','c','d']) # print(obj) """ a 0.0 b 1.0 c 2.0 d 3.0 dtype: float64 """ #索引用法 print(obj['a']) print(obj[1]) #索引之切片用法 print('----'*5) print(obj[2:4]) print(obj[['a','b']]) #取特定索引,可以不连续的索引 print('----'*5) print(obj[[1,3]]) #取索引小于2个数据 print(obj[obj<2])
# -*- coding: utf-8 -*- # Time : 2016/11/28 15:14 # Author : XiaoDeng # version : python3.5 # Software: PyCharm Community Edition import pandas as pd import numpy as np import matplotlib.pyplot as plt data=pd.DataFrame(np.arange(16).reshape(4,4), index=['ohio','colorado','utah','newyork'], columns=['one','two','three','four']) print(data) #索引基本用法 print('----'*5) print(data['two']) print('----'*5) print(data[['two','one']]) #索引方式 print('----'*5) print(data[0:2]) #类似条件语句方式 #查找two列数据大于5的所有数据 print('----'*5) print(data[data['two']>5]) #对data中所有值小于5的值,重新统一赋值为0 print('----'*5) data[data<5]=0 print(data) """ one two three four ohio 0 0 0 0 colorado 0 5 6 7 utah 8 9 10 11 newyork 12 13 14 15 """ #对行和列同时索引/ # data.ix[行索引名,[列名,列名]] print('----'*5) print(data.ix['colorado',['two','four']]) """ two 5 four 7 Name: colorado, dtype: int32 """ print('----'*5) # data.ix[[行索引名,行索引名],[列索引,列索引,列索引]] s=data.ix[['colorado','ohio'],[3,0,1]] print(s) """ four one two colorado 7 0 5 ohio 0 0 0 """ print('----'*5) print(data.ix[2]) #行索引,索引为2个数据 print(data) print('----'*5) # 行索引取utah前的行,列取two列的数据// print(data.ix[:'utah','two']) #同时满足2个条件 #1、data.three>5的数据 #2、列索引2之前的数据 #3、如此形成数据的交叉 print('----'*5) print(data.ix[data.three>5,:2])