题意

给定 $a,b$ 和模数 $p$,求整数 $x$ 满足 $a^x \equiv  b(mod \ p)$,不保证 $a,p$ 互质。

(好像是权限题,可见​​洛谷P4195​

分析

之前讲过,可以通过设置 $x = km - r$ 而非 $x = km + r$ 避免求逆元,但是需要逆元存在,$a, p$ 互质的条件保证了这一点。

如果 $a, p$ 不互质怎么办呢?

我们想办法让他们变得互质。

具体地,设 $d_1 = gcd(a, p)$,如果 $d_1 \nmid b$,则原方程无解。否则我们把方程同时除以 $d_1$,得到

$$\frac{a}{d_1}\cdot a^{x-1} \equiv \frac{b}{d_1} \ mod (\frac{p}{d_1})$$

如果 $a$ 和 $\frac{p}{d_1}$ 仍不互质就再除,设 $d_2=gcd(a, \frac{p}{d_1})$。如果 $d2 \nmid \frac{b}{d_1}$,则方程无解;否则同时除以 $d_2$ 得到

$$\frac{a^2}{d_1d_2}\cdot a^{x-2} \equiv \frac{b}{d_1d_2} \ mod(\frac{p}{d_1d_2})$$

这样不停地判断下去,直到 $a \perp \frac{p}{d_1d_2...d_k}$。

记 $D = \prod_{i=1}^kd_i$,于是方程就变成了这样:

$$\frac{a^k}{D}\cdot a^{x-k} \equiv \frac{b}{D} \ mod(\frac{p}{D})$$

由于 $a \perp \frac{p}{D}$,于是推出 $\frac{a^k}{D} \perp \frac{p}{D}$。这样 $\frac{a^k}{D}$ 就有逆元了,于是把它丢到方程的右边,就是一个普通的BSGS问题了,于是求解 $x-k$ 再加上 $k$ 就是原方程的解。

$\frac{a^k}{D}$ 可能很大,事实上可以随手模 $\frac{p}{D}$(显然)。

注意,不排除解小于等于 $k$,所以在消因子之前做 $O(k)$ 枚举,直接验证 $a^i \equiv b\ mod(p)$,就能避免这种情况。

这个复杂度已经有点玄学了,普通的BSGS的复杂度为 $O(\sqrt p logp)$。洛谷上100组,$a, b, p \leq 1e9$,map不开O2优化会超时,需要开O2优化或者使用unordered_map。

代码



#include <cstdio>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;

ll gcd(ll a, ll b)
{
return b ? gcd(b, a%b) : a;
}

ll qpow(ll a, ll b, ll p)
{
a = a % p;
ll ret = 1;
while(b)
{
if(b&1) ret = ret * a % p;
a = a * a %p;
b >>= 1;
}
return ret % p;
}

ll extend_bsgs(ll a, ll b, ll p) //a^x=b(mod p),a,p不一定互质,不存在返回-1
{
ll _a = a, _b = b, _p = p;
a %= p; b %= p;
if (a == 0)
return b > 1 ? -1 : b == 0 && p > 1;
ll g, cnt = 0, q = 1;
while ((g = gcd(a, p)) != 1) {
if (b == q) return cnt;
if (b % g) return -1;
++cnt;
b /= g;
p /= g;
q = a/g*q%p; //可以随手取模
}

ll tmp = 1;
for(int i = 0;i <= cnt;i++) //枚举小于等于cnt的(好像也不是必须的
{
if(tmp % _p == _b) return i;
tmp = tmp * _a % _p;
}

map<ll, ll> x;
ll m = sqrt(p);
for (ll i = 1, t = b*a%p; i <= m; ++i, t = t*a%p)
x[t] = i;
for (ll i = m, t = qpow(a, m, p); i-m < p-1; i += m)
if (q = q*t%p, x.count(q))
return i-x[q]+cnt;
return -1;
}

int main()
{
ll a, p, b;
while (scanf("%lld %lld %lld", &a, &p, &b), p) {
ll ans = extend_bsgs(a, b, p);
if (ans == -1)
puts("No Solution");
else
printf("%lld\n", ans);
}
return 0;
}


 

 

参考链接:

1. 大步小步算法(BSGS)及扩展  & bzoj2480

2. ​​OI WIKI——BSGS算法​


个性签名:时间会解决一切