神经网络结构图

一个21行C#代码实现的神经网络_c#

主代码如下:


double[,] X = new double[4, 3] { { 0, 0, 1 }, { 1, 1, 1 }, { 1, 0, 1 }, { 0, 1, 1 } };
double[,] y = new double[4, 1] { { 0 }, { 1 }, { 1 }, { 0 } };
Matrix MatX = new Matrix(X);
Matrix MatY = new Matrix(y);
Matrix syn0 = new Matrix(3, 4, true);
Matrix syn1 = new Matrix(4, 1, true);
Matrix L1, L1_Delta;
Matrix L2 = null, L2_Delta;
Matrix L2_Err, L1_Err;
for (long i = 0; i < 9000; i++)
{
L1 = (MatX * syn0).Nonlin(); //l1 = nonlin(np.dot(l0,syn0))
L2 = (L1 * syn1).Nonlin(); //l2 = nonlin(np.dot(l1,syn1))
L2_Err = MatY - L2; //L2_error = y - l2
L2_Delta = L2_Err ^ L2.Derivative(); //l2_delta = l2_error*nonlin(l2,deriv=True)
L1_Err = L2_Delta * syn1.T; //l1_error = l2_delta.dot(syn1.T)
L1_Delta = L1_Err ^ L1.Derivative(); //l1_delta = l1_error * nonlin(l1,deriv=True)
syn1 = syn1 + L1.T * L2_Delta * 0.01;//l1.T.dot(l2_delta)
syn0 = syn0 + MatX.T * L1_Delta * 0.01;//l0.T.dot(l1_delta)
}
Console.WriteLine(L2.ToString());
Console.WriteLine(syn0.ToString());
Console.WriteLine(syn1.ToString());


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24


收敛过程如下图,4根不同颜色的线条对应4个样本的收敛过程,可以看出他们都逐渐归到Y=0处(即X轴)

一个21行C#代码实现的神经网络_python_02

一个21行C#代码实现的神经网络_c#_03

一个21行C#代码实现的神经网络_神经网络_04

一个21行C#代码实现的神经网络_python_05

从上几个图可以看出,随着学习次数的增加,我们距离样本的目标越来越近

*最终输出结果如下图

一个21行C#代码实现的神经网络_i++_06



Matrix矩阵实类

 public class Matrix
{

public double[,] Mat;
private long _m, _n;
public long M
{
get
{
return _m;
}
private set
{
_m = value;
}
}
public long N
{
get
{
return _n;
}
private set
{
_n = value;
}
}
protected static Random rand = new Random((int)DateTime.Now.Ticks);

public Matrix(long m, long n, bool isRandValue=false)
{
_m = m;
_n = n;

Mat = new double[m, n];
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
if (isRandValue)
Mat[i, j] = rand.NextDouble();
else Mat[i, j] = 0;
}
public Matrix(double[,] m)
{
_m = m.GetLongLength(0);
_n = m.GetLongLength(1);
Mat = m;
}


public static Matrix operator +(Matrix M1, Matrix M2)
{
if (M1.M != M2.M
|| M1.N != M1.N)
throw new Exception("矩阵不符合运算条件,2个矩阵必须完全一样的行和列");

Matrix result = new Matrix(M1.M, M1.N);
for (int i = 0; i < M1.M; i++)
for (int j = 0; j < M1.N; j++)
{
result.Mat[i, j] = M1.Mat[i, j] + M2.Mat[i, j];
}
return result;
}
public static Matrix operator -(Matrix M1, Matrix M2)
{
if (M1.M != M2.M
|| M1.N != M1.N)
throw new Exception("矩阵不符合运算条件,2个矩阵必须完全一样的行和列");

Matrix result = new Matrix(M1.M, M1.N);
for (int i = 0; i < M1.M; i++)
for (int j = 0; j < M1.N; j++)
{
result.Mat[i, j] = M1.Mat[i, j] - M2.Mat[i, j];
}
return result;
}
public static Matrix operator ^(Matrix M1, Matrix M2)
{
if (M1.M != M2.M
|| M1.N != M1.N)
throw new Exception("矩阵不符合运算条件,2个矩阵必须完全一样的行和列");

Matrix result = new Matrix(M1.M, M1.N);
for (int i = 0; i < M1.M; i++)
for (int j = 0; j < M1.N; j++)
{
result.Mat[i, j] = M1.Mat[i, j]* M2.Mat[i, j];
}
return result;
}

public static Matrix operator *(Matrix M1, Matrix M2)
{
long m = M1.Mat.GetLongLength(0);
long jW = M1.Mat.GetLongLength(1);

long iH = M2.Mat.GetLongLength(0);
long n = M2.Mat.GetLongLength(1);

if (jW != iH)
throw new Exception("矩阵不符合运算条件,W的行不等于H的列");
Matrix result = new Matrix(m, n);

for (int i = 0; i < m; i++)//W的行数
{
for (int j = 0; j < n; j++)//H的列数
{

for (int k = 0; k < jW; k++)
{

result.Mat[i, j] += M2.Mat[k, j] * M1.Mat[i, k];
}
}
}

return result;
}
public static Matrix operator *(Matrix M1, double ratio)
{
long m = M1.Mat.GetLongLength(0);
long n = M1.Mat.GetLongLength(1);
Matrix result = new Matrix(m, n);
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
result.Mat[i, j] = M1.Mat[i, j] * ratio;
return result;
}

public Matrix Nonlin()
{
Matrix result = new Matrix(M,N);
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)
result.Mat[i, j] = Sigmoid(Mat[i, j]);
return result;
}
public Matrix Derivative()
{
Matrix result = new Matrix(M, N);
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)
result.Mat[i, j] = Derivative(Mat[i, j]);
return result;
}
public double Sigmoid(double x)
{
return (1 / (1 + Math.Exp(-3 * x)));
}

//求导
public double Derivative(double x)
{
return (3 * x * (1 - x));
}
public Matrix T
{
get
{
Matrix result= new Matrix(N, M);

//新矩阵生成规则: b[i,j]=a[j,i]
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
result.Mat[i, j] = this.Mat[j, i];
}
}
return result;
}
}
public override string ToString()
{
StringBuilder sbd = new StringBuilder();
for (int i = 0; i <this.M; i++)
{
for (int j = 0; j < this.N; j++)
{
sbd.Append(Mat[i, j].ToString("N10"));
sbd.Append(",");
}
sbd.AppendLine();
}
return sbd.ToString();
}
}