长链接发送request/response时, 绝大部分包都是小包, 而每个小包都要消耗一个IP包, 成本大约是20-30us, 普通千兆网卡的pps大约是60Wpps, 所以想要提高长链接密集IO的应用性能, 需要做包的合并, 也称为了scatter/gather io或者vector io.

 

在linux下有readv/writev就是对应这个需求的, 减少系统调用, 减少pps, 提高网卡的吞吐量. 关于readv提高读的速度, 可以看看陈硕muduo里面对于readv的使用, 思路是就是在栈上面弄一个64KB的数组, 组成readv的第二块buffer, 从而尽可能一次性把socket缓冲区的内容全部出来(参见5). 这里不再赘述, 重点描述DotNetty下面怎么做Gathering Write.

 

首先得有一个Channel

 

然后就是SendingLoop的主循环, 里面不停的从Channel里面TryRead包, 然后WriteAsync, 隔几个包Flush一次. 类似的思想在Orleans Network里面也存在.

 

 1 public void RunSendLoopAsync(IChannel channel) 2 { 3     var allocator = channel.Allocator; 4     var reader = this.queue.Reader; 5     Task.Run(async () => 
 6     { 7         while (!this.stop) 
 8         { 9             var more = await reader.WaitToReadAsync();10             if (!more) 
11             {12                 break;13             }14 15             IOutboundMessage message = default;16             var number = 0;17             try 18             {19                 while (number < 4 && reader.TryRead(out message) && message != null) 
20                 {21                     Interlocked.Decrement(ref this.queueCount);22                     var msg = message.Inner as IMessage;23                     var buffer = msg.ToByteBuffer(allocator);24                     channel.WriteAsync(buffer);25                     number++;26                 }27                 channel.Flush();28                 number = 0;29             }30             catch (Exception e)  when(message != default)31             {32                 logger.LogError("SendOutboundMessage Fail, SessionID:{0}, Exception:{1}",33                     this.sessionID, e.Message);34                 this.messageCenter.OnMessageFail(message);35             }36         }37         this.logger.LogInformation("SessionID:{0}, SendingLoop Exit", this.sessionID);38     });39 }

第19-27行是关键, 这边每4个包做一下flush, 然后flush会触发DotNetty的DoWrite:

 1 protected override void DoWrite(ChannelOutboundBuffer input) 2 { 3     List<ArraySegment<byte>> sharedBufferList = null; 4     try 5     { 6         while (true) 7         { 8             int size = input.Size; 9             if (size == 0)10             {11                 // All written12                 break;13             }14             long writtenBytes = 0;15             bool done = false;16 17             // Ensure the pending writes are made of ByteBufs only.18             int maxBytesPerGatheringWrite = ((TcpSocketChannelConfig)this.config).GetMaxBytesPerGatheringWrite();19             sharedBufferList = input.GetSharedBufferList(1024, maxBytesPerGatheringWrite);20             int nioBufferCnt = sharedBufferList.Count;21             long expectedWrittenBytes = input.NioBufferSize;22             Socket socket = this.Socket;23 24             List<ArraySegment<byte>> bufferList = sharedBufferList;25             // Always us nioBuffers() to workaround data-corruption.26             // See https://github.com/netty/netty/issues/276127             switch (nioBufferCnt)28             {29                 case 0:30                     // We have something else beside ByteBuffers to write so fallback to normal writes.31                     base.DoWrite(input);32                     return;33                 default:34                     for (int i = this.Configuration.WriteSpinCount - 1; i >= 0; i--)35                     {36                         long localWrittenBytes = socket.Send(bufferList, SocketFlags.None, out SocketError errorCode);37                         if (errorCode != SocketError.Success && errorCode != SocketError.WouldBlock)38                         {39                             throw new SocketException((int)errorCode);40                         }

DotNetty TcpSocketChannel类的DoWrite函数, 19行获取当前ChannelOutboundBuffer的Segment

DotNetty Libuv Transport的实现可以看6, 思想是类似的.

 

实际上Orleans 3.x做的网络优化, 也有类似的思想:

 1 private async Task ProcessOutgoing() 2 { 3     await Task.Yield(); 4  5     Exception error = default;   
 6     PipeWriter output = default; 7     var serializer = this.serviceProvider.GetRequiredService(); 8     try 9     {10         output = this.Context.Transport.Output;11         var reader = this.outgoingMessages.Reader;12         if (this.Log.IsEnabled(LogLevel.Information))13         {14             this.Log.LogInformation(15                 "Starting to process messages from local endpoint {Local} to remote endpoint {Remote}",16                 this.LocalEndPoint,17                 this.RemoteEndPoint);18         }19 20         while (true)21         {22             var more = await reader.WaitToReadAsync();23             if (!more)24             {25                 break;26             }27 28             Message message = default;29             try30             {31                 while (inflight.Count < inflight.Capacity && reader.TryRead(out message) && this.PrepareMessageForSend(message))32                 {33                     inflight.Add(message);34                     var (headerLength, bodyLength) = serializer.Write(ref output, message);35                     MessagingStatisticsGroup.OnMessageSend(this.MessageSentCounter, message, headerLength + bodyLength, headerLength, this.ConnectionDirection);36                 }37             }38             catch (Exception exception) when (message != default)39             {40                 this.OnMessageSerializationFailure(message, exception);41             }42 43             var flushResult = await output.FlushAsync();44             if (flushResult.IsCompleted || flushResult.IsCanceled)45             {46                 break;47             }48 49             inflight.Clear();50         }

核心在31行, 开始写, 43行开始flush, 只不过Orleans用的pipelines io, DotNetty是传统模型.

 

这样做, 可以在有限的pps下, 支撑更高的吞吐量.