t-SNE(t-distribution Stochastic Neighbor Embedding)是目前最为流行的高维数据的降维算法。

t-SNE 成立的前提基于这样的一个假设:我们现实世界观察到的数据集,都在本质上有一种低维的特性(low intrinsic dimensionality),尽管它们嵌入在高维空间中,甚至可以说,高维数据经过降维后,在低维状态下,更能显现其本质特性,这其实也是流形学习(Manifold Learning)的基本思想。

原始论文请见,论文链接(pdf)

1. sklearn 仿真

  • import 必要的库;

    import numpy as np
    from numpy import linalg
    from numpy.linalg import norm
    from scipy.spatial.distance import squareform, pdist
    
    
    # We import sklearn.
    
    import sklearn
    from sklearn.manifold import TSNE
    from sklearn.datasets import load_digits
    from sklearn.preprocessing import scale
    
    
    # We'll hack a bit with the t-SNE code in sklearn 0.15.2.
    
    from sklearn.metrics.pairwise import pairwise_distances
    from sklearn.manifold.t_sne import (_joint_probabilities,
                                        _kl_divergence)
    from sklearn.utils.extmath import _ravel
    
    # Random state.
    
    RS = 20150101
    
    
    # We'll use matplotlib for graphics.
    
    import matplotlib.pyplot as plt
    import matplotlib.patheffects as PathEffects
    import matplotlib
    %matplotlib inline
    
    
    # We import seaborn to make nice plots.
    
    import seaborn as sns
    sns.set_style('darkgrid')
    sns.set_palette('muted')
    sns.set_context("notebook", font_scale=1.5,
                    rc={"lines.linewidth": 2.5})
    
    
    # We'll generate an animation with matplotlib and moviepy.
    
    from moviepy.video.io.bindings import mplfig_to_npimage
    import moviepy.editor as mpy
  • 加载数据集

    digits = load_digits()
            # digits.data.shape ⇒ (1797L, 64L)
  • 调用 sklearn 工具箱中的 t-SNE 类

    X = np.vstack([digits.data[digits.target==i]
                   for i in range(10)])
    y = np.hstack([digits.target[digits.target==i]
                   for i in range(10)])
    digits_proj = TSNE(random_state=RS).fit_transform(X)
            # digits_proj:(1797L, 2L),ndarray 类型
  • 可视化

    def scatter(x, colors):
        # We choose a color palette with seaborn.
        palette = np.array(sns.color_palette("hls", 10))
    
        # We create a scatter plot.
        f = plt.figure(figsize=(8, 8))
        ax = plt.subplot(aspect='equal')
        sc = ax.scatter(x[:,0], x[:,1], lw=0, s=40,
                        c=palette[colors.astype(np.int)])
        plt.xlim(-25, 25)
        plt.ylim(-25, 25)
        ax.axis('off')
        ax.axis('tight')
    
        # We add the labels for each digit.
        txts = []
        for i in range(10):
            # Position of each label.
            xtext, ytext = np.median(x[colors == i, :], axis=0)
            txt = ax.text(xtext, ytext, str(i), fontsize=24)
            txt.set_path_effects([
                PathEffects.Stroke(linewidth=5, foreground="w"),
                PathEffects.Normal()])
            txts.append(txt)
    
        return f, ax, sc, txts
    scatter(digits_proj, y)
    plt.savefig('images/digits_tsne-generated.png', dpi=120)

An illustrated introduction to the t-SNE algorithm