题意:
给定一个整数集合,找出最大的d,使得a+b+c=d,a,b,c,d是集合中不同的元素;
思路:
如果单纯的枚举a,b,c的复杂度是O(n^3)的,为了降低复杂度,可以先把a+b的情形都找出来,然后再枚举d和c,是否符合要求;
AC代码:
#include <bits/stdc++.h> #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++) #define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) { char CH; bool F=false; for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar()); for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar()); F && (num=-num); } int stk[70], tp; template<class T> inline void print(T p) { if(!p) { puts("0"); return; } while(p) stk[++ tp] = p%10, p/=10; while(tp) putchar(stk[tp--] + '0'); putchar('\n'); } const LL mod=1e9+7; const double PI=acos(-1.0); const int inf=1e9; const int N=3e6+10; const int maxn=1e3+10; const double eps=1e-10; int a[maxn],n,ans; struct node { int a,b; }; vector<node>ve[1000*maxn]; map<int,int>mp; int check(int x,int y) { int temp=mp[x-y]; int len=ve[temp].size(); For(k,0,len-1) { int fa=ve[temp][k].a,fb=ve[temp][k].b; if(fa!=x&&fa!=y&&fb!=x&&fb!=y) { ans=max(ans,x); return x; } } return -inf; } int main() { while(1) { mp.clear(); For(i,0,1000*maxn-1)ve[i].clear(); read(n); if(!n)break; int cnt=0; For(i,1,n)read(a[i]); For(i,1,n) For(j,i+1,n) { if(!mp[a[i]+a[j]]) { cnt++; mp[a[i]+a[j]]=cnt; node d; d.a=a[i],d.b=a[j]; ve[cnt].push_back(d); } else { int temp=mp[a[i]+a[j]]; node d; d.a=a[i],d.b=a[j]; ve[temp].push_back(d); } } ans=-inf; For(i,1,n) { For(j,i+1,n) { if(mp[a[i]-a[j]])ans=max(ans,check(a[i],a[j])); if(mp[a[j]-a[i]])ans=max(ans,check(a[j],a[i])); } } if(ans==-inf)cout<<"no solution"<<endl; else cout<<ans<<endl; } return 0; }