最大类间方差法(OTSU)(转)
转载最大类间方差法(otsu)的原理:
阈值将原图象分成前景,背景两个图象。
前景:用n1,csum, m1来表示在当前阈值下的前景的点数,质量矩,平均灰度
后景:用n2, sum-csum, m2来表示在当前阈值下的背景的点数,质量矩,平均灰度
当取最佳阈值时,背景应该与前景差别最大,关键在于如何选择衡量差别的标准
而在otsu算法中这个衡量差别的标准就是最大类间方差(英文简称otsu,这也就是这个算法名字的来源)
在本程序中类间方差用sb表示,最大类间方差用fmax
关于最大类间方差法(otsu)的性能:
类间方差法对噪音和目标大小十分敏感,它仅对类间方差为单峰的图像产生较好的分割效果。
当目标与背景的大小比例悬殊时,类间方差准则函数可能呈现双峰或多峰,此时效果不好,但是类间方差法是用时最少的。
最大最大类间方差法(otsu)的公式推导:
记t为前景与背景的分割阈值,前景点数占图像比例为w0,平均灰度为u0;背景点数占图像比例为w1,平均灰度为u1。
则图像的总平均灰度为:u=w0*u0+w1*u1。
前景和背景图象的方差:g=w0*(u0-u)*(u0-u)+w1*(u1-u)*(u1-u)=w0*w1*(u0-u1)*(u0-u1),此公式为方差公式,可参照概率论课本
上面的g的公式也就是下面程序中的sb的表达式
当方差g最大时,可以认为此时前景和背景差异最大,也就是此时的灰度是最佳阈值
unsafe public int GetThreshValue(Bitmap image)
{
BitmapData bd = image.LockBits(new Rectangle(0, 0, image.Width,image.Height), ImageLockMode.WriteOnly, image.PixelFormat);
byte* pt = (byte*)bd.Scan0;
int[] pixelNum = newint[256]; //图象直方图,共256个点
byte color;
byte* pline;
int n, n1, n2;
inttotal; //total为总和,累计值
double m1, m2, sum, csum, fmax,sb; //sb为类间方差,fmax存储最大方差值
int k, t, q;
int threshValue =1; //阈值
int step = 1;
switch (image.PixelFormat)
{
case PixelFormat.Format24bppRgb:
step = 3;
break;
case PixelFormat.Format32bppArgb:
step = 4;
break;
case PixelFormat.Format8bppIndexed:
step = 1;
break;
}
//生成直方图
for (int i = 0; i < image.Height; i++)
{
pline = pt + i * bd.Stride;
for (int j = 0; j < image.Width; j++)
{
color = *(pline + j *step); //返回各个点的颜色,以RGB表示
pixelNum[color]++; //相应的直方图加1
}
}
//直方图平滑化
for (k = 0; k <= 255; k++)
{
total = 0;
for (t = -2; t <= 2;t++) //与附近2个灰度做平滑化,t值应取较小的值
{
q = k + t;
if (q < 0) //越界处理
q = 0;
if (q >255)
q = 255;
total = total +pixelNum[q]; //total为总和,累计值
}
pixelNum[k] = (int)((float)total / 5.0 +0.5); //平滑化,左边2个+中间1个+右边2个灰度,共5个,所以总和除以5,后面加0.5是用修正值
}
//求阈值
sum = csum = 0.0;
n = 0;
//计算总的图象的点数和质量矩,为后面的计算做准备
for (k = 0; k <= 255; k++)
{
sum += (double)k *(double)pixelNum[k]; //x*f(x)质量矩,也就是每个灰度的值乘以其点数(归一化后为概率),sum为其总和
n +=pixelNum[k]; //n为图象总的点数,归一化后就是累积概率
}
fmax =-1.0; //类间方差sb不可能为负,所以fmax初始值为-1不影响计算的进行
n1 = 0;
for (k = 0; k < 255;k++) //对每个灰度(从0到255)计算一次分割后的类间方差sb
{
n1 +=pixelNum[k]; //n1为在当前阈值遍前景图象的点数
if (n1 == 0) { continue;} //没有分出前景后景
n2 = n -n1; //n2为背景图象的点数
if (n2 == 0) { break;} //n2为0表示全部都是后景图象,与n1=0情况类似,之后的遍历不可能使前景点数增加,所以此时可以退出循环
csum += (double)k *pixelNum[k]; //前景的“灰度的值*其点数”的总和
m1 = csum /n1; //m1为前景的平均灰度
m2 = (sum - csum) /n2; //m2为背景的平均灰度
sb = (double)n1 * (double)n2 * (m1 - m2) * (m1 -m2); //sb为类间方差
if (sb >fmax) //如果算出的类间方差大于前一次算出的类间方差
{
fmax =sb; //fmax始终为最大类间方差(otsu)
threshValue =k; //取最大类间方差时对应的灰度的k就是最佳阈值
}
}
image.UnlockBits(bd);
image.Dispose();
return threshValue;
}
本文章为转载内容,我们尊重原作者对文章享有的著作权。如有内容错误或侵权问题,欢迎原作者联系我们进行内容更正或删除文章。
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章