Description
For example, the price when printing less than 100 pages is 20 cents per page, but when printing not less than 100 pages, you just need to pay only 10 cents per page. It's easy to figure out that if you want to print 99 pages, the best choice is to print an extra blank page so that the money you need to pay is 100 × 10 cents instead of 99 × 20 cents.
Now given the description of pricing strategy and some queries, your task is to figure out the best ways to complete those queries in order to save money.
Input
Each case contains 3 lines. The first line contains two integers n, m (0 < n, m ≤ 10 5 ). The second line contains 2n integers s 1, p 1 , s 2, p2 , ..., s n, p n (0=s 1 < s 2 < ... < s n ≤ 10 9 , 10 9 ≥ p 1 ≥ p 2 ≥ ... ≥ p n ≥ 0).. The price when printing no less than s i but less than s i+1 pages is p i cents per page (for i=1..n-1). The price when printing no less than s n pages is p n cents per page. The third line containing m integers q 1 .. q m (0 ≤ q i ≤ 10 9 ) are the queries.
Output
Sample Input
Sample Output
#include <cstdio> #include <cstdlib> #include <algorithm> #include <vector> #include <iostream> #define INF 1e18 using namespace std; const int maxn=100500; typedef long long LL; LL s[maxn],p[maxn],h[maxn]; int main() { int T,n,m; LL mid,mmin,res; scanf("%d",&T); while(T--){ scanf("%d%d",&n,&m); for(int i=0;i<n;i++){ scanf("%I64d%I64d",&s[i],&p[i]); h[i]=s[i]*p[i]; } mmin=INF; for(int i=n-1;i>=0;i--){ mmin=min(s[i]*p[i],mmin); h[i]=mmin; } for(int kk=0;kk<m;kk++){ scanf("%I64d",&mid); if(mid>=s[n-1]) printf("%I64d\n",mid*p[n-1]); else{ int t=upper_bound(s,s+n,mid)-s; res=mid*p[t-1]; res=min(res,h[t]); printf("%I64d\n",res); } } } return 0; }