死锁(哲学家就餐问题)

所谓死锁:是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互
相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统
产生了死锁,这些永远在互相等待的进程称为死锁进程

import time

from threading import Thread, Lock,RLock
lock1 = Lock()
lock2 = Lock()
# lock1 = RLock()  # 递归锁, 可重入锁
# lock2 = RLock()

def eat1( name):
    lock1.acquire()
    print("%s抢到了面条" % name)
    time.sleep(1)
    lock2.acquire()
    print("%s抢到了筷子" % name)
    time.sleep(1)
    lock2.release()
    print("%s放下了筷子" % name)
    time.sleep(1)
    print("%s放下了面条" % name)
    lock1.release()

def eat2(name):
    lock2.acquire()
    print("%s抢到了筷子" % name)
    time.sleep(1)
    lock1.acquire()
    print("%s抢到了面条" % name)
    time.sleep(1)
    lock1.release()
    print("%s放下了面条" % name)
    time.sleep(1)
    print("%s放下了筷子" % name)
    lock2.release()

if __name__ == '__main__':

    for name in ['egon', 'jason', 'ly']:
        t = Thread(target=eat1, args=( name,))
        t.start()

    for name in ['qq', 'tom', 'kevin']:
        t1 = Thread(target=eat2, args=(name,))
        t1.start()

死锁,进程锁,协程,线程锁,gevent模块_递归

递归锁RLock/可重入锁

死锁解决方法:递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提
供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从
而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程
才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁。

线程队列

import queue

# q = queue.Queue()
#
# q.put('first')
# q.put('second')
# q.put('third')
#
# print(q.get())
# print(q.get())
# print(q.get())
'''
结果(先进先出):
first
second
third
'''

q = queue.LifoQueue()
q.put('first')
q.put('second')
q.put('third')

print(q.get())
print(q.get())
print(q.get())
'''
结果(后进先出):
third
second
first
'''

q = queue.PriorityQueue()
# put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20, 'a'))
q.put((10, 'b'))
q.put((10, 'b1'))
q.put((30, 'c'))

print(q.get())
print(q.get())
print(q.get())
print(q.get())

进程锁和线程锁

from multiprocessing import Process

from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor

def task(n, m):
    return n + m

# 回调函数:
def xxx(res):
    print(res.result())

if __name__ == '__main__':
    # p = Process(target=task)
    # p.start()
    # p_pool = ProcessPoolExecutor(3)  #
    # p_pool.submit(task, n=1, m=2)
    #
    # p_pool.shutdown()  # join
    # print("end...")
    p_pool = ProcessPoolExecutor(3)
    p_pool.submit(task, n=1, m=2).add_done_callback(xxx)

import os, time, random

def task(n):
    print('%s is runing' % os.getpid())
    time.sleep(random.randint(1, 3))
    return n ** 2

if __name__ == '__main__':
    executor = ThreadPoolExecutor(max_workers=3)

    # for i in range(11):
    #     future=executor.submit(task,i)

    # executor.map(task, range(1, 12))  # map取代了for+submit
    for i in range(1, 12):
        executor.submit(task, i)

协程

是单线程下的并发
协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。
需要强调的是:

python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长
就会被迫交出cpu执行权限,切换其他线程运行)
**单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换**,
以此来提升效率(!!!非io操作的切换与效率无关)

开线程的开销比协程的开销大太多了
对比操作系统控制线程的切换,用户在单线程内控制协程的切换。

优点如下:

协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
单线程内就可以实现并发的效果,最大限度地利用cpu
缺点如下:

协程的本质是单线程下,无法利用多核
可以是一个程序开启多个进程,每个进程内开启

多个线程,每个线程内开启协程
协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

总结协程特点:

必须在只有一个单线程里实现并发
修改共享数据不需加锁
用户程序里自己保存多个控制流的上下文栈
附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都
无法实现,就用到了gevent模块(select机制))

greenlet实现状态切换

需安装第三方模块:pip3 install greenlet

def eat(name):
    print('%s eat 1' %name)
    g2.switch('nick')
    print('%s eat 2' %name)
    g2.switch()
def play(name):
    print('%s play 1' %name)
    g1.switch()
    print('%s play 2' %name)

g1=greenlet(eat)
g2=greenlet(play)

g1.switch('nick')#可以在第一次switch时传入参数,以后都不需要

运行结果:
				nick eat 1
				nick play 1
				nick eat 2
				nick play 2

gevent模块

需安装第三方模块:gevent

例1:

import gevent
def eat(name):
    print('%s eat 1' %name)
    gevent.sleep(2)
    print('%s eat 2' %name)

def play(name):
    print('%s play 1' %name)
    gevent.sleep(1)
    print('%s play 2' %name)

g1=gevent.spawn(eat,'lqz')
g2=gevent.spawn(play,name='lqz')
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print('主')

运行结果:
				lqz eat 1
				lqz play 1
				lqz play 2
				lqz eat 2
				主
需安装第三方模块:gevent

例2:

import gevent
import time

from gevent import monkey
monkey.patch_all()

def eat(name):
    print('%s eat 1' % name)
    gevent.sleep(2)
    # time.sleep(2)
    print('%s eat 2' % name)

def play(name):
    print('%s  play 1'% name)
    # gevent.sleep(1)
    time.sleep(2)
    print('%s play 2' % name)

g1 = gevent.spawn(eat, 'lqz')
g2 = gevent.spawn(play, name='lqz')

g1.join()
g2.join()

运行结果:
				lqz eat 1
				lqz  play 1
				lqz eat 2
				lqz play 2