Intel CPU相关指令:
LOCK
这是一个指令前缀,在所对应的指令操作期间使此指令的目标操作数指定的存储区域锁定,以得到保护。
XADD
先交换两个操作数的值,再进行算术加法操作。多处理器安全,在80486及以上CPU中支持。
CMPXCHG
比较交换指令,第一操作数先和AL/AX/EAX比较,如果相等ZF置1,第二操作数赋给第一操作数,否则ZF清0,第一操作数赋给AL/AX/EAX。
多处理器安全,在80486及以上CPU中支持。
CMPXCHG8B
同上,64位比较交换指令,第二操作数隐含为EDX:EAX,比较EDX:EAX与64位的目标,如果相等则ECX:EBX送往目标且ZF置1,否则目标送EDX:EAX且ZF清0。

windows互锁API列表:
InterlockedCompareExchange/InterlockedCompareExchange64
InterlockedCompareExchangeAcquire/InterlockedCompareExchangeAcquire64
InterlockedCompareExchangePointer
InterlockedCompareExchangeRelease/InterlockedCompareExchangeRelease64
InterlockedDecrement/InterlockedDecrement64
InterlockedDecrementAcquire
InterlockedDecrementRelease
InterlockedExchange/InterlockedExchange64
InterlockedExchangeAcquire64
InterlockedExchangeAdd/InterlockedExchangeAdd64
InterlockedExchangePointer
InterlockedIncrement/InterlockedIncrement64
InterlockedIncrementAcquire
InterlockedIncrementRelease

  • 多处理器安全就是当某值被某处理器修改后,其他处理器应当知晓,而不再使用CPU缓存内的旧数据。
  • 本文不讨论WinNT3.51/Win95以及更早的操作系统(它们是为80386设计的),以及安装在80386上的Win98(Win98安装时自动判断是否支持XADD指令)。

看一个简单的函数,它的作用是将lpAddend加1,并返回之。
LONG InterlockedIncrement( LPLONG lpAddend )
{
    MOV           ecx, lpAddend
    MOV           eax, 1
    LOCK XADD     dword ptr [ecx], eax
    INC           eax
    RET           4
}

看一个复杂的函数,它的作用是将lValue赋值给*plTarget,并返回*plTarget的原先值。
LONG InterlockedExchange( LPLONG plTarget, LONG lValue )
{
    MOV           ecx, plTarget
    MOV           edx, lValue
    MOV           eax, dword ptr [ecx]
L:  LOCK CMPXCHG  dword ptr [ecx], edx
    JNE           L
    RET           8
}
看,不得不动用了一个循环指令。类似的还有InterlockedCompareExchange(pdestination,exchage,comperand)函数,如果Destination等于Comperand,将Exchange赋值给Destination,否则什么也不干,返回值为Destination的原先值。

循环技巧是很有用的,Jeffrey Richter给出了一个功能代码,如果值大于0,则加1,代码如下:
do {
    LONG lStartValue = *plTarget;
    LONG lNewValue = lStartValue + ((lStartValue > 0) ? 1 : 0);
} while( InterlockedCompareExchange(plTarget,lNewValue,lStartValue) != lStartValue );

一个未知的问题是,为什么在有的操作系统中没看到LOCK。未来的研究是线程/进程锁。