概述

 

SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

SnowFlake --- 分布式id生成算法_java经验集锦

  • ​1位​​,不用。二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0
  • 41位,用来记录时间戳(毫秒)。
    <ul style="margin-left:3em;"><li>41位可以表示241−1个数字,</li> <li>如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至&nbsp;241−1,减1是因为可表示的数值范围是从0开始算的,而不是1。</li> <li>也就是说41位可以表示241−1个毫秒的值,转化成单位年则是(241−1)/(1000∗60∗60∗24∗365)=69年</li> </ul></li> <li> <p><code>10位</code>,用来记录工作机器id。</p> <ul style="margin-left:3em;"><li>可以部署在210=1024个节点,包括<code>5位datacenterId</code>和<code>5位workerId</code></li> <li><code>5位(bit)</code>可以表示的最大正整数是25−1=31,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId</li> </ul></li> <li> <p><code>12位</code>,序列号,用来记录同毫秒内产生的不同id。</p> <ul style="margin-left:3em;"><li><code>12位(bit)</code>可以表示的最大正整数是212−1=4096,即可以用0、1、2、3、....4095这4096个数字,来表示同一机器同一时间截(毫秒)内产生的4096个ID序号</li> </ul></li>

由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

SnowFlake可以保证:

  • 所有生成的id按时间趋势递增
  • 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

Talk is cheap, show you the code

以下是​​Twitter官方原版​​的,用Scala写的,(我也不懂Scala,当成Java看即可):

1. 

2.

/** Copyright 2010-2012 Twitter, Inc.*/


3.


package com.twitter.service.snowflake


4.




5.


import com.twitter.ostrich.stats.Stats



6.


import com.twitter.service.snowflake.gen._


7.


import java.util.Random



8.


import com.twitter.logging.Logger



9.




10.

/**


11.

* An object that generates IDs.


12.

* This is broken into a separate class in case


13.

* we ever want to support multiple worker threads


14.

* per process


15.

*/


16.


class IdWorker(


17.

val workerId: Long,


18.

val datacenterId: Long,


19.

private val reporter: Reporter,


20.

var sequence: Long = 0L) extends Snowflake.Iface {


21.




22.

private[this] def genCounter(agent: String) = {


23.

Stats.incr("ids_generated")


24.

Stats.incr("ids_generated_%s".format(agent))


25.

}


26.

private[this] val exceptionCounter = Stats.getCounter("exceptions")


27.

private[this] val log = Logger.get



28.

private[this] val rand = new Random



29.




30.

val twepoch = 1288834974657L


31.




32.

private[this] val workerIdBits = 5L


33.

private[this] val datacenterIdBits = 5L


34.

private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)


35.

private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)


36.

private[this] val sequenceBits = 12L


37.




38.

private[this] val workerIdShift = sequenceBits


39.

private[this] val datacenterIdShift = sequenceBits + workerIdBits


40.

private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits


41.

private[this] val sequenceMask = -1L ^ (-1L << sequenceBits)


42.




43.

private[this] var lastTimestamp = -1L


44.




45.

// sanity check for workerId



46.

if (workerId > maxWorkerId || workerId < 0) {


47.

exceptionCounter.incr(1)


48.

throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId))


49.

}


50.




51.

if (datacenterId > maxDatacenterId || datacenterId < 0) {


52.

exceptionCounter.incr(1)


53.

throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId))


54.

}


55.




56.

log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",


57.

timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId)


58.




59.

def get_id(useragent: String): Long = {


60.

if (!validUseragent(useragent)) {


61.

exceptionCounter.incr(1)


62.

throw new InvalidUserAgentError



63.

}


64.




65.

val id = nextId()


66.

genCounter(useragent)


67.




68.

reporter.report(new AuditLogEntry(id, useragent, rand.nextLong))


69.

id


70.

}


71.




72.

def get_worker_id(): Long = workerId


73.

def get_datacenter_id(): Long = datacenterId


74.

def get_timestamp() = System.currentTimeMillis


75.




76.

protected[snowflake] def nextId(): Long = synchronized {


77.

var timestamp = timeGen()


78.




79.

if (timestamp < lastTimestamp) {


80.

exceptionCounter.incr(1)


81.

log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);


82.

throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format(


83.

lastTimestamp - timestamp))


84.

}


85.




86.

if (lastTimestamp == timestamp) {


87.

sequence = (sequence + 1) & sequenceMask


88.

if (sequence == 0) {


89.

timestamp = tilNextMillis(lastTimestamp)


90.

}


91.

} else {


92.

sequence = 0



93.

}


94.




95.

lastTimestamp = timestamp


96.

((timestamp - twepoch) << timestampLeftShift) |


97.

(datacenterId << datacenterIdShift) |


98.

(workerId << workerIdShift) |


99.

sequence


100.

}


101.




102.

protected def tilNextMillis(lastTimestamp: Long): Long = {


103.

var timestamp = timeGen()


104.

while (timestamp <= lastTimestamp) {


105.

timestamp = timeGen()


106.

}


107.

timestamp


108.

}


109.




110.

protected def timeGen(): Long = System.currentTimeMillis()


111.




112.

val AgentParser = """([a-zA-Z][a-zA-Z\-0-9]*)""".r


113.




114.

def validUseragent(useragent: String): Boolean = useragent match {


115.

case AgentParser(_) => true



116.

case _ => false



117.

}


118.

}


119.



Scala是一门可以编译成字节码的语言,简单理解是在Java语法基础上加上了很多语法糖,例如不用每条语句后写分号,可以使用动态类型等等。抱着试一试的心态,我把Scala版的代码“翻译”成Java版本的,对scala代码改动的地方如下:

1. 

2.

/** Copyright 2010-2012 Twitter, Inc.*/


3.


package com.twitter.service.snowflake


4.




5.


import com.twitter.ostrich.stats.Stats


6.


import com.twitter.service.snowflake.gen._


7.


import java.util.Random



8.


import com.twitter.logging.Logger



9.




10.

/**


11.

* An object that generates IDs.


12.

* This is broken into a separate class in case


13.

* we ever want to support multiple worker threads


14.

* per process


15.

*/


16.


class IdWorker( // |



17.

val workerId: Long, // |



18.

val datacenterId: Long, // |<--这部分改成Java的构造函数形式



19.

private val reporter: Reporter,//日志相关,删 // |



20.

var sequence: Long = 0L) // |



21.

extends Snowflake.Iface { //接口找不到,删 // |



22.




23.

private[this] def genCounter(agent: String) = { // |



24.

Stats.incr("ids_generated") // |



25.

Stats.incr("ids_generated_%s".format(agent)) // |<--错误、日志处理相关,删



26.

} // |



27.

private[this] val exceptionCounter = Stats.getCounter("exceptions") // |



28.

private[this] val log = Logger.get // |



29.

private[this] val rand = new Random // |



30.




31.

val twepoch = 1288834974657L


32.




33.

private[this] val workerIdBits = 5L


34.

private[this] val datacenterIdBits = 5L


35.

private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)


36.

private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)


37.

private[this] val sequenceBits = 12L


38.




39.

private[this] val workerIdShift = sequenceBits


40.

private[this] val datacenterIdShift = sequenceBits + workerIdBits


41.

private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits


42.

private[this] val sequenceMask = -1L ^ (-1L << sequenceBits)


43.




44.

private[this] var lastTimestamp = -1L


45.




46.

//----------------------------------------------------------------------------------------------------------------------------//



47.

// sanity check for workerId //



48.

if (workerId > maxWorkerId || workerId < 0) { //



49.

exceptionCounter.incr(1) //<--错误处理相关,删 //



50.

throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId)) //这



51.

// |-->改成:throw new IllegalArgumentException //部



52.

// (String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)) //分



53.

} //放



54.

//到



55.

if (datacenterId > maxDatacenterId || datacenterId < 0) { //构



56.

exceptionCounter.incr(1) //<--错误处理相关,删 //造



57.

throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId)) //函



58.

// |-->改成:throw new IllegalArgumentException //数



59.

// (String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)) //中



60.

} //



61.

//



62.

log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", //



63.

timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId) //



64.

// |-->改成:System.out.printf("worker...%d...",timestampLeftShift,...); //



65.

//----------------------------------------------------------------------------------------------------------------------------//



66.




67.

//-------------------------------------------------------------------//



68.

//这个函数删除错误处理相关的代码后,剩下一行代码:val id = nextId() //



69.

//所以我们直接调用nextId()函数可以了,所以在“翻译”时可以删除这个函数 //



70.

def get_id(useragent: String): Long = { //



71.

if (!validUseragent(useragent)) { //



72.

exceptionCounter.incr(1) //



73.

throw new InvalidUserAgentError //删



74.

} //除



75.

//



76.

val id = nextId() //



77.

genCounter(useragent) //



78.

//



79.

reporter.report(new AuditLogEntry(id, useragent, rand.nextLong)) //



80.

id //



81.

} //



82.

//-------------------------------------------------------------------//



83.




84.

def get_worker_id(): Long = workerId // |



85.

def get_datacenter_id(): Long = datacenterId // |<--改成Java函数



86.

def get_timestamp() = System.currentTimeMillis // |



87.




88.

protected[snowflake] def nextId(): Long = synchronized { // 改成Java函数



89.

var timestamp = timeGen()


90.




91.

if (timestamp < lastTimestamp) {


92.

exceptionCounter.incr(1) // 错误处理相关,删



93.

log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp); // 改成System.err.printf(...)



94.

throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format(


95.

lastTimestamp - timestamp)) // 改成RumTimeException



96.

}


97.




98.

if (lastTimestamp == timestamp) {


99.

sequence = (sequence + 1) & sequenceMask


100.

if (sequence == 0) {


101.

timestamp = tilNextMillis(lastTimestamp)


102.

}


103.

} else {


104.

sequence = 0



105.

}


106.




107.

lastTimestamp = timestamp


108.

((timestamp - twepoch) << timestampLeftShift) | // |<--加上关键字return



109.

(datacenterId << datacenterIdShift) | // |



110.

(workerId << workerIdShift) | // |



111.

sequence // |



112.

}


113.




114.

protected def tilNextMillis(lastTimestamp: Long): Long = { // 改成Java函数



115.

var timestamp = timeGen()


116.

while (timestamp <= lastTimestamp) {


117.

timestamp = timeGen()


118.

}


119.

timestamp // 加上关键字return



120.

}


121.




122.

protected def timeGen(): Long = System.currentTimeMillis() // 改成Java函数



123.




124.

val AgentParser = """([a-zA-Z][a-zA-Z\-0-9]*)""".r // |



125.

// |



126.

def validUseragent(useragent: String): Boolean = useragent match { // |<--日志相关,删



127.

case AgentParser(_) => true // |



128.

case _ => false // |



129.

} // |



130.

}


131.



改出来的Java版:

1. 

2.


public class IdWorker{


3.




4.

private long workerId;


5.

private long datacenterId;


6.

private long sequence;


7.




8.

public IdWorker(long workerId, long datacenterId, long sequence){


9.

// sanity check for workerId



10.

if (workerId > maxWorkerId || workerId < 0) {


11.

throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));


12.

}


13.

if (datacenterId > maxDatacenterId || datacenterId < 0) {


14.

throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));


15.

}


16.

System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",


17.

timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);


18.




19.

this.workerId = workerId;


20.

this.datacenterId = datacenterId;


21.

this.sequence = sequence;


22.

}


23.




24.

private long twepoch = 1288834974657L;


25.




26.

private long workerIdBits = 5L;


27.

private long datacenterIdBits = 5L;


28.

private long maxWorkerId = -1L ^ (-1L << workerIdBits);


29.

private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);


30.

private long sequenceBits = 12L;


31.




32.

private long workerIdShift = sequenceBits;


33.

private long datacenterIdShift = sequenceBits + workerIdBits;


34.

private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;


35.

private long sequenceMask = -1L ^ (-1L << sequenceBits);


36.




37.

private long lastTimestamp = -1L;


38.




39.

public long getWorkerId(){


40.

return workerId;


41.

}


42.




43.

public long getDatacenterId(){


44.

return datacenterId;


45.

}


46.




47.

public long getTimestamp(){


48.

return System.currentTimeMillis();


49.

}


50.




51.

public synchronized long nextId() {


52.

long timestamp = timeGen();


53.




54.

if (timestamp < lastTimestamp) {


55.

System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);


56.

throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",


57.

lastTimestamp - timestamp));


58.

}


59.




60.

if (lastTimestamp == timestamp) {


61.

sequence = (sequence + 1) & sequenceMask;


62.

if (sequence == 0) {


63.

timestamp = tilNextMillis(lastTimestamp);


64.

}


65.

} else {


66.

sequence = 0;


67.

}


68.




69.

lastTimestamp = timestamp;


70.

return ((timestamp - twepoch) << timestampLeftShift) |


71.

(datacenterId << datacenterIdShift) |


72.

(workerId << workerIdShift) |


73.

sequence;


74.

}


75.




76.

private long tilNextMillis(long lastTimestamp) {


77.

long timestamp = timeGen();


78.

while (timestamp <= lastTimestamp) {


79.

timestamp = timeGen();


80.

}


81.

return timestamp;


82.

}


83.




84.

private long timeGen(){


85.

return System.currentTimeMillis();


86.

}


87.




88.

//---------------测试---------------



89.

public static void main(String[] args) {


90.

IdWorker worker = new IdWorker(1,1,1);


91.

for (int i = 0; i < 30; i++) {


92.

System.out.println(worker.nextId());


93.

}


94.

}


95.




96.

}


97.



代码理解

上面的代码中,有部分位运算的代码,如:

1. 

2.

sequence = (sequence + 1) & sequenceMask;


3.




4.


private long maxWorkerId = -1L ^ (-1L << workerIdBits);


5.




6.


return ((timestamp - twepoch) << timestampLeftShift) |


7.

(datacenterId << datacenterIdShift) |


8.

(workerId << workerIdShift) |


9.

sequence;


10.



为了能更好理解,我对相关知识研究了一下。

负数的二进制表示

在计算机中,负数的二进制是用​​补码​​来表示的。

假设我是用Java中的int类型来存储数字的,

int类型的大小是32个二进制位(bit),即4个字节(byte)。(1 byte = 8 bit)

那么十进制数字​​3​​在二进制中的表示应该是这样的:

1. 

2.


00000000 00000000 00000000 00000011



3.

// 3的二进制表示,就是原码


4.



那数字​​-3​​在二进制中应该如何表示?

我们可以反过来想想,因为-3+3=0,

在二进制运算中​​把-3的二进制看成未知数x来求解​​,

求解算式的二进制表示如下:

1. 

2.




3.

00000000 00000000 00000000 00000011 //3,原码



4.

+ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx //-3,补码


5.

-----------------------------------------------


6.

00000000 00000000 00000000 00000000



7.



反推x的值,3的二进制加上什么值才使结果变成​​00000000 00000000 00000000 00000000​​?:

1. 

2.

00000000 00000000 00000000 00000011 //3,原码



3.

+ 11111111 11111111 11111111 11111101 //-3,补码



4.

-----------------------------------------------


5.

1 00000000 00000000 00000000 00000000



6.



反推的思路是3的二进制数从最低位开始逐位加1,使溢出的1不断向高位溢出,直到溢出到第33位。然后由于int类型最多只能保存32个二进制位,所以最高位的1溢出了,剩下的32位就成了(十进制的)0。

补码的意义就是可以拿补码和原码(3的二进制)相加,最终加出一个“溢出的0”

以上是理解的过程,实际中记住公式就很容易算出来:

  • 补码 = 反码 + 1
  • 补码 = (原码 - 1)再取反码

因此​​-1​​的二进制应该这样算:

1. 

2.


00000000 00000000 00000000 00000001 //原码:1的二进制



3.


11111111 11111111 11111111 11111110 //取反码:1的二进制的反码



4.


11111111 11111111 11111111 11111111 //加1:-1的二进制表示(补码)



5.



用位运算计算n个bit能表示的最大数值

比如这样一行代码:

1. 

2.




3.

private long workerIdBits = 5L;


4.

private long maxWorkerId = -1L ^ (-1L << workerIdBits);


5.



上面代码换成这样看方便一点:

​long maxWorkerId = -1L ^ (-1L << 5L)​

咋一看真的看不准哪个部分先计算,于是查了一下Java运算符的优先级表:

SnowFlake --- 分布式id生成算法_SQL_02

所以上面那行代码中,运行顺序是:

  • -1 左移 5,得结果a
  • -1 异或 a

​long maxWorkerId = -1L ^ (-1L << 5L)​​的二进制运算过程如下:

-1 左移 5,得结果a :

1. 

2.

11111111 11111111 11111111 11111111 //-1的二进制表示(补码)



3.

11111 11111111 11111111 11111111 11100000 //高位溢出的不要,低位补0



4.

11111111 11111111 11111111 11100000 //结果a



5.



-1 异或 a :

1. 

2.

11111111 11111111 11111111 11111111 //-1的二进制表示(补码)



3.

^ 11111111 11111111 11111111 11100000 //两个操作数的位中,相同则为0,不同则为1



4.

---------------------------------------------------------------------------


5.

00000000 00000000 00000000 00011111 //最终结果31



6.



最终结果是31,二进制​​00000000 00000000 00000000 00011111​​转十进制可以这么算:

24+23+22+21+20=16+8+4+2+1=31

 

那既然现在知道算出来​​long maxWorkerId = -1L ^ (-1L << 5L)​​中的​​maxWorkerId = 31​​,有什么含义?为什么要用左移5来算?如果你看过​​概述​​部分,请找到这段内容看看:

​5位(bit)​​可以表示的最大正整数是25−1=31,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId

​-1L ^ (-1L << 5L)​​结果是​​31​​,25−1的结果也是​​31​​,所以在代码中,​​-1L ^ (-1L << 5L)​​的写法是​​利用位运算计算出5位能表示的最大正整数是多少​

用mask防止溢出

有一段有趣的代码:

sequence = (sequence + 1) & sequenceMask;


分别用不同的值测试一下,你就知道它怎么有趣了:

1. 

2.

long seqMask = -1L ^ (-1L << 12L); //计算12位能耐存储的最大正整数,相当于:2^12-1 = 4095



3.

System.out.println("seqMask: "+seqMask);


4.

System.out.println(1L & seqMask);


5.

System.out.println(2L & seqMask);


6.

System.out.println(3L & seqMask);


7.

System.out.println(4L & seqMask);


8.

System.out.println(4095L & seqMask);


9.

System.out.println(4096L & seqMask);


10.

System.out.println(4097L & seqMask);


11.

System.out.println(4098L & seqMask);


12.




13.




14.

/**



15.

seqMask: 4095


16.

1


17.

2


18.

3


19.

4


20.

4095


21.

0


22.

1


23.

2


24.

*/


25.



这段代码通过​​位与​​运算保证计算的结果范围始终是 0-4095 !

用位运算汇总结果

还有另外一段诡异的代码:

1. 

2.


return ((timestamp - twepoch) << timestampLeftShift) |


3.

(datacenterId << datacenterIdShift) |


4.

(workerId << workerIdShift) |


5.

sequence;


6.



为了弄清楚这段代码,

​首先​​ 需要计算一下相关的值:

1. 

2.




3.

private long twepoch = 1288834974657L; //起始时间戳,用于用当前时间戳减去这个时间戳,算出偏移量


4.




5.

private long workerIdBits = 5L; //workerId占用的位数:5


6.

private long datacenterIdBits = 5L; //datacenterId占用的位数:5


7.

private long maxWorkerId = -1L ^ (-1L << workerIdBits); // workerId可以使用的最大数值:31


8.

private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // datacenterId可以使用的最大数值:31


9.

private long sequenceBits = 12L;//序列号占用的位数:12


10.




11.

private long workerIdShift = sequenceBits; // 12


12.

private long datacenterIdShift = sequenceBits + workerIdBits; // 12+5 = 17


13.

private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; // 12+5+5 = 22


14.

private long sequenceMask = -1L ^ (-1L << sequenceBits);//4095


15.




16.

private long lastTimestamp = -1L;


17.



​其次​​ 写个测试,把参数都写死,并运行打印信息,方便后面来核对计算结果:

1. 

2.




3.

//---------------测试---------------



4.

public static void main(String[] args) {


5.

long timestamp = 1505914988849L;


6.

long twepoch = 1288834974657L;


7.

long datacenterId = 17L;


8.

long workerId = 25L;


9.

long sequence = 0L;


10.




11.

System.out.printf("\ntimestamp: %d \n",timestamp);


12.

System.out.printf("twepoch: %d \n",twepoch);


13.

System.out.printf("datacenterId: %d \n",datacenterId);


14.

System.out.printf("workerId: %d \n",workerId);


15.

System.out.printf("sequence: %d \n",sequence);


16.

System.out.println();


17.

System.out.printf("(timestamp - twepoch): %d \n",(timestamp - twepoch));


18.

System.out.printf("((timestamp - twepoch) << 22L): %d \n",((timestamp - twepoch) << 22L));


19.

System.out.printf("(datacenterId << 17L): %d \n" ,(datacenterId << 17L));


20.

System.out.printf("(workerId << 12L): %d \n",(workerId << 12L));


21.

System.out.printf("sequence: %d \n",sequence);


22.




23.

long result = ((timestamp - twepoch) << 22L) |


24.

(datacenterId << 17L) |


25.

(workerId << 12L) |


26.

sequence;


27.

System.out.println(result);


28.




29.

}


30.




31.

/** 打印信息:



32.

timestamp: 1505914988849


33.

twepoch: 1288834974657


34.

datacenterId: 17


35.

workerId: 25


36.

sequence: 0


37.




38.

(timestamp - twepoch): 217080014192


39.

((timestamp - twepoch) << 22L): 910499571845562368


40.

(datacenterId << 17L): 2228224


41.

(workerId << 12L): 102400


42.

sequence: 0


43.

910499571847892992


44.

*/


45.



代入位移的值得之后,就是这样:

1. 

2.


return ((timestamp - 1288834974657) << 22) |


3.

(datacenterId << 17) |


4.

(workerId << 12) |


5.

sequence;


6.



对于尚未知道的值,我们可以先看看​​概述​​ 中对SnowFlake结构的解释,再代入在合法范围的值(windows系统可以用计算器方便计算这些值的二进制),来了解计算的过程。

当然,由于我的测试代码已经把这些值写死了,那直接用这些值来手工验证计算结果即可:

1. 

2.

long timestamp = 1505914988849L;


3.

long twepoch = 1288834974657L;


4.

long datacenterId = 17L;


5.

long workerId = 25L;


6.

long sequence = 0L;


7.


1. 

2.

设:timestamp = 1505914988849,twepoch = 1288834974657



3.


1505914988849 - 1288834974657 = 217080014192 (timestamp相对于起始时间的毫秒偏移量),其(a)二进制左移22位计算过程如下:


4.




5.

|<--这里开始左右22位 ‭


6.


00000000 00000000 000000|00 00110010 10001010 11111010 00100101 01110000 // a = 217080014192



7.


00001100 10100010 10111110 10001001 01011100 00|000000 00000000 00000000 // a左移22位后的值(la)



8.

|<--这里后面的位补0



9.



1. 

2.

设:datacenterId = 17,其(b)二进制左移17位计算过程如下:


3.




4.

|<--这里开始左移17位


5.


00000000 00000000 0|0000000 ‭00000000 00000000 00000000 00000000 00010001 // b = 17



6.


0000000‭0 00000000 00000000 00000000 00000000 0010001|0 00000000 00000000 // b左移17位后的值(lb)



7.

|<--这里后面的位补0



8.



1. 

2.

设:workerId = 25,其(c)二进制左移12位计算过程如下:


3.




4.

|<--这里开始左移12位


5.

‭00000000 0000|0000 00000000 00000000 00000000 00000000 00000000 00011001‬ // c = 25



6.


00000000 00000000 00000000 00000000 00000000 00000001 1001|0000 00000000‬ // c左移12位后的值(lc)



7.

|<--这里后面的位补0



8.



1. 

2.

设:sequence = 0,其二进制如下:


3.




4.


00000000 00000000 00000000 00000000 00000000 00000000 0000‭0000 00000000‬ // sequence = 0



5.



现在知道了每个部分左移后的值(la,lb,lc),代码可以简化成下面这样去理解:

1. 

2.


return ((timestamp - 1288834974657) << 22) |



3.

(datacenterId << 17) |


4.

(workerId << 12) |



5.

sequence;


6.


-----------------------------



7.

|


8.

|简化



9.

\|/


10.

-----------------------------


11.


return (la) |



12.

(lb) |


13.

(lc) |



14.

sequence;


15.



上面的管道符号​​|​​在Java中也是一个位运算符。其含义是:

​x的第n位和y的第n位 只要有一个是1,则结果的第n位也为1,否则为0​​,因此,我们对四个数的​​位或运算​​如下:

1. 

2.

1 | 41 | 5 | 5 | 12


3.




4.

0|0001100 10100010 10111110 10001001 01011100 00|00000|0 0000|0000 00000000 //la



5.

0|000000‭0 00000000 00000000 00000000 00000000 00|10001|0 0000|0000 00000000 //lb



6.

0|0000000 00000000 00000000 00000000 00000000 00|00000|1 1001|0000 00000000 //lc



7.


or 0|0000000 00000000 00000000 00000000 00000000 00|00000|0 0000|‭0000 00000000‬ //sequence



8.

------------------------------------------------------------------------------------------


9.

0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|‭0000 00000000‬ //结果:910499571847892992



10.



结果计算过程:

1) 从至左列出1出现的下标(从0开始算):

1. 

2.


0000 1 1 00 1 0 1 000 1 0 1 0 1 1 1 1 1 0 1 000 1 00 1 0 1 0 1 1 1 0000 1 000 1 1 1 00 1‭ 0000 0000 0000



3.

59 58 55 53 49 47 45 44 43 42 41 39 35 32 30 28 27 26 21 17 16 15 12



4.



2) 各个下标作为2的幂数来计算,并相加:

259+258+255+253+249+247+245+244+243+242+241+239+235+232+230+228+227+226+221+217+216+215+22

1. 

2.

2^59} : 576460752303423488


3.

2^58} : 288230376151711744


4.

2^55} : 36028797018963968


5.

2^53} : 9007199254740992


6.

2^49} : 562949953421312


7.

2^47} : 140737488355328


8.

2^45} : 35184372088832


9.

2^44} : 17592186044416


10.

2^43} : 8796093022208


11.

2^42} : 4398046511104


12.

2^41} : 2199023255552


13.

2^39} : 549755813888


14.

2^35} : 34359738368


15.

2^32} : 4294967296


16.

2^30} : 1073741824


17.

2^28} : 268435456


18.

2^27} : 134217728


19.

2^26} : 67108864


20.

2^21} : 2097152


21.

2^17} : 131072


22.

2^16} : 65536


23.

2^15} : 32768


24.


+ 2^12} : 4096



25.

----------------------------------------


26.

910499571847892992



27.



计算截图:

SnowFlake --- 分布式id生成算法_Oracle_03

跟测试程序打印出来的结果一样,手工验证完毕!

观察

1. 

2.

1 | 41 | 5 | 5 | 12


3.




4.

0|0001100 10100010 10111110 10001001 01011100 00| | | //la



5.

0| |10001| | //lb



6.

0| | |1 1001| //lc



7.


or 0| | | |‭0000 00000000‬ //sequence



8.

------------------------------------------------------------------------------------------


9.

0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|‭0000 00000000‬ //结果:910499571847892992



10.



上面的64位我按1、41、5、5、12的位数截开了,方便观察。

  • 纵向观察发现:
    <ul style="margin-left:3em;"><li>在41位那一段,除了la一行有值,其它行(lb、lc、sequence)都是0,(我爸其它)</li> <li>在左起第一个5位那一段,除了lb一行有值,其它行都是0</li> <li>在左起第二个5位那一段,除了lc一行有值,其它行都是0</li> <li>按照这规律,如果sequence是0以外的其它值,12位那段也会有值的,其它行都是0</li> </ul></li> <li> <p><code>横向</code>观察发现:</p> <ul style="margin-left:3em;"><li>在la行,由于左移了5+5+12位,5、5、12这三段都补0了,所以la行除了41那段外,其它肯定都是0</li> <li>同理,lb、lc、sequnece行也以此类推</li> <li>正因为左移的操作,使四个不同的值移到了SnowFlake理论上相应的位置,然后四行做<code>位或</code>运算(只要有1结果就是1),就把4段的二进制数合并成一个二进制数。</li> </ul></li>

结论:

所以,在这段代码中

1. 

2.


return ((timestamp - 1288834974657) << 22) |


3.

(datacenterId << 17) |


4.

(workerId << 12) |


5.

sequence;


6.



左移运算是为了将数值移动到对应的段(41、5、5,12那段因为本来就在最右,因此不用左移)。

然后对每个左移后的值(la、lb、lc、sequence)做位或运算,是为了把各个短的数据合并起来,合并成一个二进制数。

最后转换成10进制,就是最终生成的id

扩展

在理解了这个算法之后,其实还有一些扩展的事情可以做:

  1. 根据自己业务修改每个位段存储的信息。算法是通用的,可以根据自己需求适当调整每段的大小以及存储的信息。
  2. 解密id,由于id的每段都保存了特定的信息,所以拿到一个id,应该可以尝试反推出原始的每个段的信息。反推出的信息可以帮助我们分析。比如作为订单,可以知道该订单的生成日期,负责处理的数据中心等等。