【历史背景】

秦九韶算法是​​中国​​​​南宋​​时期的​​数学家​​​​秦九韶​​表述求解一元高次多项式的值的​​算法​​——正负开方术。它也能够配合​​牛顿法​​用来求解一元高次多项式的根。在西方被称作霍纳算法(Horner algorithm或Horner scheme),是以英国数学家威廉·乔治·霍纳命名的。


【原理解释】

设有n+1项的n次函数

f(x)=anxn+ an-1xn-1+an-2xn-2+ an-3xn-3+…… a2x2+a1x+ a 0

将前n项提取公因子x,得

f(x)=(anxn-1+ an-1xn-2+an-2xn-3+…… a2x+a1)+ a0

再将括号内的前n-1项提取公因子x,得

f(x)=((anxn-2+ an-1xn-3+an-2xn-4+…… a2)x+ a1)x+a0

如此重复提取公因子x,最后将函数化为

f(x)=(((anx+ an-1)x+ an-2)x+……+a1)x+a0

令f1= anx+ an-1

f2=f1x+ an-2

f3=f2x+ an-3

。。。

fn=fn-1x+ a0    则fn即为所求


【代码演示样例】

AlgorithmCalculatorService.java

/**
* 获取系数集合
* @param N 多项式个数
* @return 系数集合
*/
public static ArrayList<Double> getCoefficientList(Integer N) {
ArrayList<Double> AnList = new ArrayList<Double>();
//随机生成N个0到10之间的系数
Random random = new Random();
while(N > 0) {
AnList.add((double) (Math.round(random.nextFloat()*100)/10.0)); //随机一个[0-10]之间的一位小数
N--;
}
return AnList;
}

/**
* 运行传统算法并获取结果
* 模板为 An*X^n + An-1*X^n-1 + ... A1X + A0
* @param AnList 系数集合
* @param X X值
* @return 计算结果
*/
public static String getResultByTrandition(ArrayList<Double> AnList, Float X) {
int N = AnList.size() - 1;
Double result = 0D;
long start = System.currentTimeMillis(); //获取当前时间,单位为毫秒
for(Double An : AnList) {//遍历系数集合,每一次循环计算出一项的值,并相加
Double Xn = 1D;
int i = 0;
while(i<N) {
Xn = Xn*X;
i++;
}
N--;
result = result + An*Xn;
}
long end = System.currentTimeMillis();
String resultMsg = "计算结果: " + result + " ,耗时为:" + (end - start) + "毫秒!";
return resultMsg;
}

/**
* 运行秦九韶算法并获取结果
* 模板为((...(An*X + An-1)X + An-2)X + ... + A1)X + A0
* @param AnList 系数集合
* @return 计算结果
*/
@SuppressWarnings("unchecked")
public static String getResultByHorner(ArrayList<Double> anList, Float X) {
ArrayList<Double> AnList = (ArrayList<Double>) anList.clone();
Double V = (double)AnList.get(0);
AnList.remove(0);
long start = System.currentTimeMillis(); //获取当前时间,单位为毫秒
for(Double An : AnList) {
V = X*V + An;
}
long end = System.currentTimeMillis();
String resultMsg = "计算结果: " + V + " ,耗时为:" + (end - start) + "毫秒!";
return resultMsg;
}

public static void main(String[] args) {
ArrayList<Double> anlist = getCoefficientList(5);
String msg1 = getResultByTrandition(anlist, 3F);
System.out.println("传统算法: " + msg1);
String msg2 = getResultByHorner(anlist, 3F);
System.out.println("九韶算法: " + msg2);
}



【执行结果】

传统算法: 计算结果: 8.992778799971419E137 ,耗时为:20毫秒!

九韶算法: 计算结果: 8.992778799971422E137 ,耗时为:0毫秒!


【结果分析】

当数据量较大时,在耗时方面秦九韶算法相比传统算法占领明显优势!