- Contest Info
- Solutions
- A. Berstagram
- C. Trip to Saint Petersburg
- E. The Coronation
- F. Data Center
- G. Discarding Game
- H. Happy Birthday
- J. The Parade
- L. Divide The Students
- M. SmartGarden
- N. Wires
Contest Info
[Practice Link](https://codeforces.com/contest/1250)
Solved | A | B | C | D | E | F | G | H | I | J | K | L | M | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9/14 | O | O | O | - | O | O | - | O | - | O | - | O | - | O |
- O 在比赛中通过
- Ø 赛后通过
- ! 尝试了但是失败了
- - 没有尝试
Solutions
A. Berstagram
题意:
给出\(n\)个数,刚开始第\(i\)个数在第\(i\)个位置,有\(m\)次操作,将标号为\(a_i\)的数和它前面那个数交换位置,如果它已经在最前面了,那么不操作。
最后输出\(n\)行,表示每个数所待过的位置的下标的最小值和最大值
思路:
每次交换只会影响两个数,暴力即可。
代码:
view code ```c++ #include using namespace std; using pII = pair; #define fi first #define se second const int N = 4e5 + 10; int n, m, a[N], fa[N], b[N]; pII res[N]; void up(int x, int y) { res[x].fi = min(res[x].fi, y); res[x].se = max(res[x].se, y); }int main() {
while (scanf("%d%d", &n, &m) != EOF) {
for (int i = 1; i <= n; ++i) a[i] = i, fa[i] = i, res[i] = pII(i, i);
for (int i = 1; i <= m; ++i) scanf("%d", b + i);
for (int i = 1; i <= m; ++i) {
int x = b[i];
if (fa[x] == 1) continue;
int pre = a[fa[x] - 1];
swap(fa[x], fa[pre]);
swap(a[fa[x]], a[fa[pre]]);
up(x, fa[x]);
up(pre, fa[pre]);
// for (int j = 1; j <= n; ++j)
// printf("%d%c", a[j], " \n"[j == n]);
}
for (int i = 1; i <= n; ++i)
printf("%d %d\n", res[i].fi, res[i].se);
}
return 0;
}
</details> ### B. The Feast and the Bus 题意: 有$n$个人,$k$个小组,每个人属于一个小组,每个小组至少有一个人。 现在要租$r$辆巴士,每辆巴士的容量都为$s$,但是$s$和$r$可以自己定,使得能够装下所有人,并且满足以下两个限制条件: - 同一组的人在同一辆巴士 - 一辆巴士最多有两个小组的人 使得$r \cdot s$最小 思路: 考虑$k$很小,我们可以枚举$r$,然后可以算出有多少辆巴士必须要两个小组,然后贪心放,让小组人数多的占用单组巴士,小组人数少的贪心配对,即最大的配最小的,次大的配次小的$\cdots$ 时间复杂度$O(k^2)$ 代码: <details> <summary>view code</summary> ```c++ #include <bits/stdc++.h> using namespace std; using ll = long long; const int N = 5e5 + 10; int n, k, a[N]; ll gao(int x) { ll s = 0; int need = k - (2 * x - k); for (int i = 1, j = need; i < j; ++i, --j) { s = max(s, 1ll * a[i] + a[j]); } for (int i = need + 1; i <= k; ++i) s = max(s, 1ll * a[i]); return s; } int main() { while (scanf("%d%d", &n, &k) != EOF) { memset(a, 0, sizeof a); for (int i = 1, x; i <= n; ++i) { scanf("%d", &x); ++a[x]; } sort(a + 1, a + 1 + k); ll res = 1e18; for (int i = (k + 1) / 2; i <= k; ++i) { res = min(res, 1ll * i * gao(i)); } printf("%lld\n", res); } return 0; },>
C. Trip to Saint Petersburg
题意:
给出\(n\)个工作,和一个参数\(k\)。
每个工作的工作时间为\([l_i, r_i]\),可以获得\(p_i\)的利润,并且工作随便选,工作时间可以重叠。
唯一的代价就是所选择的工作中的最小的\(L = l_i\),最大的\(R = r_i\),代价就是\(k \cdot (R - L + 1)\)。
问所能获得的最大利润。
思路:
枚举右端点\(R\),然后线段树维护左端点的贡献,每次要将\(r_i = R\)的工作的贡献加给左端点在\([1, l_i]\)范围内的。
然后查询区间最值即可。
代码:
view code#include <bits/stdc++.h> using namespace std; using ll = long long; using pIL = pair<int, ll>; #define fi first #define se second const int N = 2e5 + 10; const ll INF = 0x3f3f3f3f3f3f3f3f; int n, m, pl[N], pr[N]; ll k; vector <vector<pIL>> vec; struct SEG { struct node { ll Max, lazy; int pos; node() { Max = -INF; lazy = pos = 0; } void up(ll x) { Max += x; lazy += x; } node operator + (const node &other) const { node res = node(); if (Max >= other.Max) { res.Max = Max; res.pos = pos; } else { res.Max = other.Max; res.pos = other.pos; } return res; } }t[N << 2], res; void build(int id, int l, int r) { t[id] = node(); if (l == r) { t[id].Max = 0; t[id].pos = l; return; } int mid = (l + r) >> 1; build(id << 1, l, mid); build(id << 1 | 1, mid + 1, r); t[id] = t[id << 1] + t[id << 1 | 1]; } void down(int id) { ll &lazy = t[id].lazy; if (lazy) { t[id << 1].up(lazy); t[id << 1 | 1].up(lazy); lazy = 0; } } void update(int id, int l, int r, int ql, int qr, ll v) { if (l >= ql && r <= qr) { t[id].up(v); return; } int mid = (l + r) >> 1; down(id); if (ql <= mid) update(id << 1, l, mid, ql, qr, v); if (qr > mid) update(id << 1 | 1, mid + 1, r, ql, qr, v); t[id] = t[id << 1] + t[id << 1 | 1]; } void query(int id, int l, int r, int ql, int qr) { if (l >= ql && r <= qr) { res = res + t[id]; return; } int mid = (l + r) >> 1; down(id); if (ql <= mid) query(id << 1, l, mid, ql, qr); if (qr > mid) query(id << 1 | 1, mid + 1, r, ql, qr); } }seg; int main() { while (scanf("%d%lld", &n, &k) != EOF) { vec.clear(); vec.resize(N); m = 2e5; for (int i = 1; i <= n; ++i) { int l, r; ll p; scanf("%d%d%lld", &l, &r, &p); pl[i] = l, pr[i] = r; vec[r].push_back(pIL(l, p)); } ll p = 0; int L = -1, R = -1; seg.build(1, 1, m); for (int i = 1; i <= m; ++i) { seg.update(1, 1, m, 1, i, -k); for (auto &it : vec[i]) seg.update(1, 1, m, 1, it.fi, it.se); seg.res = SEG::node(); seg.query(1, 1, m, 1, i); if (seg.res.Max > p) { p = seg.res.Max; L = seg.res.pos; R = i; } } if (p == 0) puts("0"); else { vector <int> vec; for (int i = 1; i <= n; ++i) if (pl[i] >= L && pr[i] <= R) vec.push_back(i); int sze = vec.size(); printf("%lld %d %d %d\n", p, L, R, sze); for (int i = 0; i < sze; ++i) printf("%d%c", vec[i], " \n"[i == sze - 1]); } } return 0; }
E. The Coronation
题意:
给出\(n\)个\(01\)串,每个\(01\)串可以\(reverse\),求最少的\(reverse\)次数,使得任意两个串的有大于等于\(k\)个位置的字符是相同的。
代码:
view code#include <bits/stdc++.h> using namespace std; const int N = 60; struct Edge { int v, p;//1 same Edge() {} Edge(int v, int p): v(v), p(p) {} }; bool F; int n, m, k; string s[N]; vector<vector<Edge> > G; bool ok(const string &S, const string &T) { int cnt = 0; for (int i = 0; i < m; ++i) { if (S[i] == T[i]) ++cnt; } return cnt >= k; } int col[N], vis[N]; vector<int> vec, res; void DFS(int u) { if (!F) return ; vis[u] = 1; vec.push_back(u); for (auto &it: G[u]) { if (col[it.v] == -1) { if (it.p) { col[it.v] = col[u]; } else { col[it.v] = col[u] ^ 1; } DFS(it.v); } else { if (it.p) { if (col[it.v] != col[u]) { F = false; break; } } else { if (col[it.v] != (col[u] ^ 1)) { F = false; break; } } } } } int main() { ios::sync_with_stdio(false); cin.tie(0), cout.tie(0); int T; cin >> T; while (T--) { cin >> n >> m >> k; G.clear(); G.resize(n + 1); memset(vis, 0, sizeof vis); memset(col, -1, sizeof col); for (int i = 1; i <= n; ++i) { cin >> s[i]; } F = true; for (int i = 1; i <= n; ++i) { for (int j = i + 1; j <= n; ++j) { int cnt = 0; int same = 0; if (ok(s[i], s[j])) { cnt++; same = 1; } reverse(s[j].begin(), s[j].end()); cnt += ok(s[i], s[j]); reverse(s[j].begin(), s[j].end()); if (cnt == 0) { F = false; break; } if (cnt == 1) { G[i].push_back(Edge(j, same)); G[j].push_back(Edge(i, same)); } } if (!F) { F = false; break; } } if (!F) { cout << "-1\n"; continue; } res.clear(); for (int i = 1; i <= n; ++i) { if (!vis[i]) { col[i] = 1; vec.clear(); DFS(i); int cnt[2] = {0, 0}; for (auto &it: vec) { cnt[col[it]]++; } int now = 0; if (cnt[1] < cnt[0]) { now = 1; } for (auto &it : vec) { if (col[it] == now) { res.push_back(it); } } } } if (!F) { cout << "-1\n"; } else { int sze = res.size(); cout << sze << "\n"; for (int i = 0; i < sze; ++i) { if (i) cout << " "; cout << res[i]; } cout << "\n"; } } return 0; }
F. Data Center
题意:
给出一个矩形的面积\(n\),求所有合法矩形中的最小周长。
思路:
暴力分解。
代码:
view code#include <bits/stdc++.h> using namespace std; int main() { int n; while (scanf("%d", &n) != EOF) { int res = 1e9; for (int i = 1; i <= n; ++i) { if (n % i == 0) { res = min(res, i + n / i); } } res *= 2; printf("%d\n", res); } return 0; }
G. Discarding Game
题意:
有两个人玩游戏,刚开始两个人的分数都是\(0\),每一轮,\(A\)的分数会加上\(a_i\),\(B\)的分数会加上\(b_i\),如果某个人的分数大于等于\(k\),它就输了,如果两个人都大于等于\(k\),两个人都输了。
如果最后过完了\(n\)轮,两人的分数都小于\(k\),那么是平局。
赢的情况是其中某个人输了,那么另一个人就赢了。
现在\(A\)有超能力,它可以在每一轮加分结束后按下一个按钮,假定此时\(A\)的分数为\(x\),\(B\)的分数为\(y\), \(A\)的分数变成\(max(0, x - y)\),\(B\)的分数变成\(max(0, y - x)\)。
现在求最少次数使得\(A\)赢了。
H. Happy Birthday
题意:
给出\([0, 9]\)每种数字的个数,问最小的不能被拼出来的数是多少。
代码:
view code#include <bits/stdc++.h> using namespace std; int a[100]; int main() { int T; scanf("%d", &T); while (T--) { for (int i = 0; i < 10; ++i) scanf("%d", a + i); int Min = a[0] + 2; for (int i = 1; i < 10; ++i) Min = min(Min, a[i] + 1); if (Min == a[0] + 2) { printf("1"); for (int i = 1; i <= a[0] + 1; ++i) printf("0"); puts(""); } else { for (int i = 1; i < 10; ++i) { if (Min == a[i] + 1) { for (int j = 1; j <= a[i] + 1; ++j) printf("%d", i); puts(""); break; } } } } return 0; }
J. The Parade
代码:
view code#include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 1e5 + 10; int n; ll k; ll a[N], b[N]; bool check(ll x) { ll cnt = 0, remind = 0; for (int i = 1; i <= n; ++i) { b[i] = a[i]; if (b[i] >= x - remind) { cnt++; b[i] -= x - remind; remind = 0; } cnt += b[i] / x; remind = b[i] % x; if (cnt >= k) return true; } return cnt >= k; } int main() { int T; scanf("%d", &T); while (T--) { scanf("%d %lld", &n, &k); for (int i = 1; i <= n; ++i) { scanf("%lld", a + i); } ll l = 1, r = 1e17, res = 0; while (r - l >= 0) { ll mid = (l + r) >> 1; if (check(mid)) { res = mid; l = mid + 1; } else { r = mid - 1; } } printf("%lld\n", res * k); } return 0; }
L. Divide The Students
题意:
有三类人,每类人有\(a, b, c\)个。
现在要将这三类人分成三组,使得第一类和第三类人不能在同一组,并且使得所有组的最大人数最少。
思路:
令\(a > c\),那么将\(c\)单独放在一组,将\(a\)均分成两组,然后\(b\)每次选一个人数最少的组放。
代码:
view code#include <bits/stdc++.h> using namespace std; int main() { int _T; scanf("%d", &_T); while (_T--) { int a, b, c; scanf("%d%d%d", &a, &b, &c); // int res = max((a + b + c + 2) / 3, min(a, c)); // printf("%d\n", res); if (a < c) swap(a, c); int A[3] = {a / 2, a - a / 2, c}; while (b) { sort(A, A + 3); ++A[0]; --b; } printf("%d\n", max(A[0], max(A[1], A[2]))); } return 0; }
M. SmartGarden
题意:
给出一个\(n \cdot n\)的矩形,其中对角线和对角线下面一条线是墙,其他地方是蔬菜,类似这样:
现在每次可以选择若干个行,若干个列,将这些行列相交的地方浇上水,次数最多为\(50\)次,并且不能浇到墙,并且每棵蔬菜都要被浇到。
N. Wires
题意:
给出\(n\)条边,点的标号在\([1, 10^9]\),现在可以修改某条边的某个端点,使得这\(n\)条边所构成的图是一个连通块。
使得修改次数最少。
思路:
显然最少修改次数为连通块个数 - 1。
随便选取一个连通块出来,让其他连通块都连向这个连通块。
然后考虑每个连通块里:
- 如果有\(1\)度顶点,直接改掉这个\(1\)度顶点
- 那么没有\(1\)度顶点,那么必然有环,随便改掉环上的一条边即可
代码:
view code#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10, INF = 0x3f3f3f3f; struct Hash { vector <int> a; void init() { a.clear(); } void add(int x) { a.push_back(x); } void gao() { sort(a.begin(), a.end()); a.erase(unique(a.begin(), a.end()), a.end()); } int get(int x) { return lower_bound(a.begin(), a.end(), x) - a.begin() + 1; } }hs; struct E { int u, v; E() {} E(int u, int v) : u(u), v(v) {} }e[N]; struct node { int id, u, v; }; vector <vector<node>> G; vector <node> res; int n, m, d[N], fa[N], vis[N], Insta[N], used[N], usede[N], F; int find(int x) { return fa[x] == 0 ? x : fa[x] = find(fa[x]); } void merge(int u, int v) { u = find(u); v = find(v); if (u != v) fa[u] = v; } void dfs(int u) { used[u] = 1; Insta[u] = 1; for (auto &it : G[u]) if (!usede[it.id]) { usede[it.id] = 1; int v = it.v; if (Insta[v]) { if (!F) { res.push_back({it.id, hs.a[it.u - 1], hs.a[0]}); F = 1; return; } } if (used[v] == 0) { dfs(v); } if (F) return; } Insta[u] = 0; } int main() { int _T; scanf("%d", &_T); while (_T--) { scanf("%d", &n); hs.init(); for (int i = 1, u, v; i <= n; ++i) { scanf("%d%d", &u, &v); hs.add(u); hs.add(v); e[i] = E(u, v); usede[i] = 0; } hs.gao(); m = hs.a.size(); for (int i = 1; i <= m; ++i) { d[i] = fa[i] = 0; vis[i] = 0; Insta[i] = used[i] = 0; } G.clear(); G.resize(m + 1); for (int i = 1; i <= n; ++i) { e[i].u = hs.get(e[i].u); e[i].v = hs.get(e[i].v); ++d[e[i].u]; ++d[e[i].v]; merge(e[i].u, e[i].v); int u = e[i].u, v = e[i].v; G[u].push_back({i, u, v}); G[v].push_back({i, v, u}); } int rt = 1, frt = find(rt); vis[frt] = 1; res.clear(); for (int i = 1; i <= n; ++i) { int &u = e[i].u, &v = e[i].v; if (d[u] > d[v]) swap(u, v); int fu = find(u); if (vis[fu]) continue; if (d[u] == 1) { res.push_back({i, hs.a[u - 1], hs.a[0]}); vis[fu] = 1; } } for (int i = 1; i <= m; ++i) { int fi = find(i); if (vis[fi]) continue; F = 0; vis[fi] = 1; dfs(i); } int sze = res.size(); printf("%d\n", sze); for (int i = 0; i < sze; ++i) { printf("%d %d %d\n", res[i].id, res[i].u, res[i].v); } } return 0; }