本文基于 2021 “AI Earth”人工智能创新挑战赛-AI助力精准气象和海洋预测梳理了时间序列赛事的实践和分析过程,提供了完整baseline方案。时间序列(或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测。

从0梳理1场时间序列赛事!_JAVA

一、赛题背景

赛题简介

比赛地址:https://tianchi.aliyun.com/competition/entrance/531871/information(复制粘贴或文末读原文

本次赛题是一个时间序列预测问题。基于历史气候观测和模式模拟数据,利用T时刻过去12个月(包含T时刻)的时空序列(气象因子),构建预测ENSO的深度学习模型,预测未来1-24个月的Nino3.4指数,如下图所示:

从0梳理1场时间序列赛事!_JAVA_02

背景数据描述

1. 数据简介

本次比赛使用的数据包括CMIP5/6模式的历史模拟数据和美国SODA模式重建的近100多年历史观测同化数据。每个样本包含以下气象及时空变量:海表温度异常(SST),热含量异常(T300),纬向风异常(Ua),经向风异常(Va),数据维度为(year,month,lat,lon)。对于训练数据提供对应月份的Nino3.4 index标签数据。

2. 训练数据标签说明

标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。

CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值,因此数据维度与维度介绍同训练数据一致。

注:三个月滑动平均值为当前月与未来两个月的平均值。

3. 测试数据说明

测试用的初始场(输入)数据为国际多个海洋资料同化结果提供的随机抽取的n段12个时间序列,数据格式采用NPY格式保存,维度为(12,lat,lon, 4),12为t时刻及过去11个时刻,4为预测因子,并按照SST,T300,Ua,Va的顺序存放。

测试集文件序列的命名规则:test_编号_起始月份_终止月份.npy,如test_00001_01_12_.npy。

评估指标

评分细则说明:根据所提供的n个测试数据,对模型进行测试,得到n组未来1-24个月的序列选取对应预测时效的n个数据与标签值进行计算相关系数和均方根误差,如下图所示。并计算得分。从0梳理1场时间序列赛事!_JAVA_03计算公式为:

从0梳理1场时间序列赛事!_JAVA_04

其中,

从0梳理1场时间序列赛事!_JAVA_05

而:

从0梳理1场时间序列赛事!_JAVA_06

二、线下数据转换

将数据转化为我们所熟悉的形式,每个人的风格不一样,此处可以作为如何将nc文件转化为csv等文件

## 工具包导入&数据读取
### 工具包导入

'''
安装工具
# !pip install netCDF4
'''

import pandas as pd
import numpy  as np
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
import scipy
from netCDF4 import Dataset
import netCDF4 as nc
import gc
%matplotlib inline

1. 数据读取

1.1 SODA_label处理

  1. 标签含义
标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。
CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值,因此数据维度与维度介绍同训练数据一致
注:三个月滑动平均值为当前月与未来两个月的平均值。
  1. 将标签转化为我们熟悉的pandas形式
label_path       = './data/SODA_label.nc'
label_trans_path = './data/'
nc_label         = Dataset(label_path,'r')

years            = np.array(nc_label['year'][:])
months           = np.array(nc_label['month'][:])

year_month_index = []
vs               = []
for i,year in enumerate(years):
   for j,month in enumerate(months):
       year_month_index.append('year_{}_month_{}'.format(year,month))
       vs.append(np.array(nc_label['nino'][i,j]))

df_SODA_label               = pd.DataFrame({'year_month':year_month_index})
df_SODA_label['year_month'] = year_month_index
df_SODA_label['label']      = vs

df_SODA_label.to_csv(label_trans_path + 'df_SODA_label.csv',index = None)
df_label.head()
从0梳理1场时间序列赛事!_JAVA_07

2. 数据格式转化

2.1 SODA_train处理

SODA_train.nc中[0,0:36,:,:]为第1-第3年逐月的历史观测数据;

SODA_train.nc中[1,0:36,:,:]为第2-第4年逐月的历史观测数据;
…,
SODA_train.nc中[99,0:36,:,:]为第100-102年逐月的历史观测数据。
SODA_path        = './data/SODA_train.nc'
nc_SODA          = Dataset(SODA_path,'r')

自定义抽取对应数据&转化为df的形式;

index为年月; columns为lat和lon的组合

def trans_df(df, vals, lats, lons, years, months):
   '''
       (100, 36, 24, 72) -- year, month,lat,lon
   '''

   for j,lat_ in enumerate(lats):
       for i,lon_ in enumerate(lons):
           c = 'lat_lon_{}_{}'.format(int(lat_),int(lon_))  
           v = []
           for y in range(len(years)):
               for m in range(len(months)):
                   v.append(vals[y,m,j,i])
           df[c] = v
   return df
year_month_index = []

years              = np.array(nc_SODA['year'][:])
months             = np.array(nc_SODA['month'][:])
lats             = np.array(nc_SODA['lat'][:])
lons             = np.array(nc_SODA['lon'][:])


for year in years:
   for month in months:
       year_month_index.append('year_{}_month_{}'.format(year,month))

df_sst  = pd.DataFrame({'year_month':year_month_index})
df_t300 = pd.DataFrame({'year_month':year_month_index})
df_ua   = pd.DataFrame({'year_month':year_month_index})
df_va   = pd.DataFrame({'year_month':year_month_index})
%%time
df_sst = trans_df(df = df_sst, vals = np.array(nc_SODA['sst'][:]), lats = lats, lons = lons, years = years, months = months)
df_t300 = trans_df(df = df_t300, vals = np.array(nc_SODA['t300'][:]), lats = lats, lons = lons, years = years, months = months)
df_ua   = trans_df(df = df_ua, vals = np.array(nc_SODA['ua'][:]), lats = lats, lons = lons, years = years, months = months)
df_va   = trans_df(df = df_va, vals = np.array(nc_SODA['va'][:]), lats = lats, lons = lons, years = years, months = months)
label_trans_path = './data/'
df_sst.to_csv(label_trans_path  + 'df_sst_SODA.csv',index = None)
df_t300.to_csv(label_trans_path + 'df_t300_SODA.csv',index = None)
df_ua.to_csv(label_trans_path   + 'df_ua_SODA.csv',index = None)
df_va.to_csv(label_trans_path   + 'df_va_SODA.csv',index = None)

2.2 CMIP_label处理

label_path       = './data/CMIP_label.nc'
label_trans_path = './data/'
nc_label         = Dataset(label_path,'r')

years            = np.array(nc_label['year'][:])
months           = np.array(nc_label['month'][:])

year_month_index = []
vs               = []
for i,year in enumerate(years):
   for j,month in enumerate(months):
       year_month_index.append('year_{}_month_{}'.format(year,month))
       vs.append(np.array(nc_label['nino'][i,j]))

df_CMIP_label               = pd.DataFrame({'year_month':year_month_index})
df_CMIP_label['year_month'] = year_month_index
df_CMIP_label['label']      = vs

df_CMIP_label.to_csv(label_trans_path + 'df_CMIP_label.csv',index = None)
df_CMIP_label.head()
从0梳理1场时间序列赛事!_JAVA_08

2.3 CMIP_train处理

CMIP_train.nc中[0,0:36,:,:]为CMIP6第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[150,0:36,:,:]为CMIP6第一个模式提供的第151-第153年逐月的历史模拟数据;

CMIP_train.nc中[151,0:36,:,:]为CMIP6第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2265,0:36,:,:]为CMIP5第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2405,0:36,:,:]为CMIP5第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[4644,0:36,:,:]为CMIP5第17个模式提供的第140-第142年逐月的历史模拟数据。

其中每个样本第三、第四维度分别代表经纬度(南纬55度北纬60度,东经0360度),所有数据的经纬度范围相同。
CMIP_path       = './data/CMIP_train.nc'
CMIP_trans_path = './data'
nc_CMIP  = Dataset(CMIP_path,'r')
nc_CMIP.variables.keys()

# dict_keys(['sst', 't300', 'ua', 'va', 'year', 'month', 'lat', 'lon'])
nc_CMIP['t300'][:].shape

# (4645, 36, 24, 72)
year_month_index = []

years              = np.array(nc_CMIP['year'][:])
months             = np.array(nc_CMIP['month'][:])
lats               = np.array(nc_CMIP['lat'][:])
lons               = np.array(nc_CMIP['lon'][:])

last_thre_years = 1000
for year in years:
   '''
       数据的原因,我们
   '''

   if year >= 4645 - last_thre_years:
       for month in months:
           year_month_index.append('year_{}_month_{}'.format(year,month))

df_CMIP_sst  = pd.DataFrame({'year_month':year_month_index})
df_CMIP_t300 = pd.DataFrame({'year_month':year_month_index})
df_CMIP_ua   = pd.DataFrame({'year_month':year_month_index})
df_CMIP_va   = pd.DataFrame({'year_month':year_month_index})
  • 因为内存限制,我们暂时取最后1000个year的数据
def trans_thre_df(df, vals, lats, lons, years, months, last_thre_years = 1000):
   '''
       (4645, 36, 24, 72) -- year, month,lat,lon
   '''

   for j,lat_ in (enumerate(lats)):
#         print(j)
       for i,lon_ in enumerate(lons):
           c = 'lat_lon_{}_{}'.format(int(lat_),int(lon_))  
           v = []
           for y_,y in enumerate(years):
               '''
                   数据的原因,我们
               '''

               if y >= 4645 - last_thre_years:
                   for m_,m in  enumerate(months):
                       v.append(vals[y_,m_,j,i])
           df[c] = v
   return df
%%time
df_CMIP_sst  = trans_thre_df(df = df_CMIP_sst,  vals   = np.array(nc_CMIP['sst'][:]),  lats = lats, lons = lons, years = years, months = months)
df_CMIP_sst.to_csv(CMIP_trans_path + 'df_CMIP_sst.csv',index = None)
del df_CMIP_sst
gc.collect()

df_CMIP_t300 = trans_thre_df(df = df_CMIP_t300, vals   = np.array(nc_CMIP['t300'][:]), lats = lats, lons = lons, years = years, months = months)
df_CMIP_t300.to_csv(CMIP_trans_path + 'df_CMIP_t300.csv',index = None)
del df_CMIP_t300
gc.collect()

df_CMIP_ua   = trans_thre_df(df = df_CMIP_ua,   vals   = np.array(nc_CMIP['ua'][:]),   lats = lats, lons = lons, years = years, months = months)
df_CMIP_ua.to_csv(CMIP_trans_path + 'df_CMIP_ua.csv',index = None)
del df_CMIP_ua
gc.collect()

df_CMIP_va   = trans_thre_df(df = df_CMIP_va,   vals   = np.array(nc_CMIP['va'][:]),   lats = lats, lons = lons, years = years, months = months)
df_CMIP_va.to_csv(CMIP_trans_path + 'df_CMIP_va.csv',index = None)
del df_CMIP_va
gc.collect()

# (36036, 1729)

数据建模

工具包导入&数据读取

1. 工具包导入

import pandas as pd
import numpy  as np
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
import scipy
import joblib
from netCDF4 import Dataset
import netCDF4 as nc
from tensorflow.keras.callbacks import LearningRateScheduler, Callback
import tensorflow.keras.backend as K
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import *
from tensorflow.keras.layers import Input
import gc
%matplotlib inline

2. 数据读取

SODA_label处理

  1. 标签
标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。
CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值,因此数据维度与维度介绍同训练数据一致
注:三个月滑动平均值为当前月与未来两个月的平均值。
label_path       = './data/SODA_label.nc' 
nc_label         = Dataset(label_path,'r')
tr_nc_labels     = nc_label['nino'][:]

2. 原始特征数据读取

SODA_path        = './data/SODA_train.nc'
nc_SODA          = Dataset(SODA_path,'r')

nc_sst           = np.array(nc_SODA['sst'][:])
nc_t300          = np.array(nc_SODA['t300'][:])
nc_ua            = np.array(nc_SODA['ua'][:])
nc_va            = np.array(nc_SODA['va'][:])

模型构建

1. 神经网络框架

def RMSE(y_true, y_pred):
   return tf.sqrt(tf.reduce_mean(tf.square(y_true - y_pred)))

def RMSE_fn(y_true, y_pred):
   return np.sqrt(np.mean(np.power(np.array(y_true, float).reshape(-1, 1) - np.array(y_pred, float).reshape(-1, 1), 2)))

def build_model():  
   inp    = Input(shape=(12,24,72,4))  
   
   x_4    = Dense(1, activation='relu')(inp)  
   x_3    = Dense(1, activation='relu')(tf.reshape(x_4,[-1,12,24,72]))
   x_2    = Dense(1, activation='relu')(tf.reshape(x_3,[-1,12,24]))
   x_1    = Dense(1, activation='relu')(tf.reshape(x_2,[-1,12]))
   
   x = Dense(64, activation='relu')(x_1)  
   x = Dropout(0.25)(x)
   x = Dense(32, activation='relu')(x)  
   x = Dropout(0.25)(x)  
   output = Dense(24, activation='linear')(x)  
   model  = Model(inputs=inp, outputs=output)

   adam = tf.optimizers.Adam(lr=1e-3,beta_1=0.99,beta_2 = 0.99)
   model.compile(optimizer=adam, loss=RMSE)

   return model

2. 训练集验证集划分

### 训练特征,保证和训练集一致
tr_features = np.concatenate([nc_sst[:,:12,:,:].reshape(-1,12,24,72,1),nc_t300[:,:12,:,:].reshape(-1,12,24,72,1),\
                             nc_ua[:,:12,:,:].reshape(-1,12,24,72,1),nc_va[:,:12,:,:].reshape(-1,12,24,72,1)],axis=-1)

### 训练标签,取后24个
tr_labels = tr_nc_labels[:,12:]

### 训练集验证集划分
tr_len     = int(tr_features.shape[0] * 0.8)
tr_fea     = tr_features[:tr_len,:].copy()
tr_label   = tr_labels[:tr_len,:].copy()

val_fea     = tr_features[tr_len:,:].copy()
val_label   = tr_labels[tr_len:,:].copy()

3. 模型训练

#### 构建模型
model_mlp     = build_model()
#### 模型存储的位置
model_weights = './model_baseline/model_mlp_baseline.h5'

checkpoint = ModelCheckpoint(model_weights, monitor='val_loss', verbose=0, save_best_only=True, mode='min',
                            save_weights_only=True)

plateau        = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, verbose=1, min_delta=1e-4, mode='min')
early_stopping = EarlyStopping(monitor="val_loss", patience=20)
history        = model_mlp.fit(tr_fea, tr_label,
                   validation_data=(val_fea, val_label),
                   batch_size=4096, epochs=200,
                   callbacks=[plateau, checkpoint, early_stopping],
                   verbose=2)

4. 模型预测

prediction = model_mlp.predict(val_fea)

5. Metrics

from   sklearn.metrics import mean_squared_error
def rmse(y_true, y_preds):
   return np.sqrt(mean_squared_error(y_pred = y_preds, y_true = y_true))

def score(y_true, y_preds):
   accskill_score = 0
   rmse_scores    = 0
   a = [1.5] * 4 + [2] * 7 + [3] * 7 + [4] * 6
   y_true_mean = np.mean(y_true,axis=0)
   y_pred_mean = np.mean(y_preds,axis=0)
#     print(y_true_mean.shape, y_pred_mean.shape)

   for i in range(24):
       fenzi = np.sum((y_true[:,i] -  y_true_mean[i]) *(y_preds[:,i] -  y_pred_mean[i]) )
       fenmu = np.sqrt(np.sum((y_true[:,i] -  y_true_mean[i])**2) * np.sum((y_preds[:,i] -  y_pred_mean[i])**2) )
       cor_i = fenzi / fenmu
   
       accskill_score += a[i] * np.log(i+1) * cor_i
       rmse_score   = rmse(y_true[:,i], y_preds[:,i])
#         print(cor_i,  2 / 3.0 * a[i] * np.log(i+1) * cor_i - rmse_score)
       rmse_scores += rmse_score
   
   return  2 / 3.0 * accskill_score - rmse_scores
print('score', score(y_true = val_label, y_preds = prediction))


三、模型预测

在上面的部分,我们已经训练好了模型,接下来就是提交模型并在线上进行预测,这块可以分为三步:

  • 导入模型;
  • 读取测试数据并且进行预测;
  • 生成提交所需的版本;

模型导入

import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import *
from tensorflow.keras.layers import Input
import numpy as np
import os
import zipfile


def RMSE(y_true, y_pred):
   return tf.sqrt(tf.reduce_mean(tf.square(y_true - y_pred)))

def build_model():  
   inp    = Input(shape=(12,24,72,4))  
   
   x_4    = Dense(1, activation='relu')(inp)  
   x_3    = Dense(1, activation='relu')(tf.reshape(x_4,[-1,12,24,72]))
   x_2    = Dense(1, activation='relu')(tf.reshape(x_3,[-1,12,24]))
   x_1    = Dense(1, activation='relu')(tf.reshape(x_2,[-1,12]))
   
   x = Dense(64, activation='relu')(x_1)  
   x = Dropout(0.25)(x)
   x = Dense(32, activation='relu')(x)  
   x = Dropout(0.25)(x)  
   output = Dense(24, activation='linear')(x)  
   model  = Model(inputs=inp, outputs=output)

   adam = tf.optimizers.Adam(lr=1e-3,beta_1=0.99,beta_2 = 0.99)
   model.compile(optimizer=adam, loss=RMSE)

   return model


model = build_model()
model.load_weights('./user_data/model_data/model_mlp_baseline.h5')

模型预测

test_path = './tcdata/enso_round1_test_20210201/'

### 1. 测试数据读取
files = os.listdir(test_path)
test_feas_dict = {}
for file in files:
   test_feas_dict[file] = np.load(test_path + file)
   
### 2. 结果预测
test_predicts_dict = {}
for file_name,val in test_feas_dict.items():
   test_predicts_dict[file_name] = model.predict(val).reshape(-1,)
#     test_predicts_dict[file_name] = model.predict(val.reshape([-1,12])[0,:])

### 3.存储预测结果
for file_name,val in test_predicts_dict.items():
   np.save('./result/' + file_name,val)

预测结果打包

#打包目录为zip文件(未压缩)
def make_zip(source_dir='./result/', output_filename = 'result.zip'):
   zipf = zipfile.ZipFile(output_filename, 'w')
   pre_len = len(os.path.dirname(source_dir))
   source_dirs = os.walk(source_dir)
   print(source_dirs)
   for parent, dirnames, filenames in source_dirs:
       print(parent, dirnames)
       for filename in filenames:
           if '.npy' not in filename:
               continue
           pathfile = os.path.join(parent, filename)
           arcname = pathfile[pre_len:].strip(os.path.sep)   #相对路径
           zipf.write(pathfile, arcname)
   zipf.close()
make_zip()


四、提升方向

  • 模型角度:我们只使用了简单的MLP模型进行建模,可以考虑使用其它的更加fancy的模型进行尝试;
  • 数据层面:构建一些特征或者对数据进行一些数据变换等;
  • 针对损失函数设计各种trick的提升技巧;
从0梳理1场时间序列赛事!_JAVA_09