- 内核的生成,实际上最终的目的是生成一个binary文件zImage,大小2-5MB的数量级。
- 用户可以从kernel.org得到的tar.gz格式的内核源代码,此代码解压后,就会生成初始状态的内核源代码树,这种状态称为内核的初始状态。
- 通过make mrproper/make distclean等指令,可以使内核恢复到刚解压的状态。其中make mrproper只清除包括.config文件在内的,为内核编译及连接而生成的诸多配置文件。distclean对象执行mrproper命令,清除内核编译后生成的所有对象文件,备份文件等。
- 如果将初始化状态的内核直接编译,虽然能生成vmlinux,但大多数情况下会引起内核严重错误(kernel panic)。构建内核前,需要执行的最重要,最需谨慎处理的部分是内核配置(kernel configureation)过程。内核配置过程也是适当选择与自身相吻合的各种内核要素的过程。
- 内核的配置可以用xconfig,menuconfig,gconfig等,最终都是会执行一个二进制文件,如menuconfig最终执行的是mconf,这个程序在./script/kconfig/目录下。
- 在构建内核时,各个*.o的目录下都有一个.*.cmd,这个文件是记录这个.o最终执行的编译命令的,如vmlinux.cmd和.vmlinux.o.cmd。
- 一句make一般来说,默认的目标有两个,一个是vmlinux,一个是zImage
- 通过emulator启动goldfish的时候,实际上启动的是zImage,这货才2.5MB左右,启动命令如下:
emulator -show-kernel -kernel /mnt/VMDisk1/kernel/goldfish/arch/arm/boot/zImage -avd test -qemu -s
- 1
- 1
- 在图形化界面下,内核的配置也会有很多很多问题,一般每个系统均提供自定义配置文件,这些配置文件都是与具体芯片相关的(Soc, System on Chip),如下:
tigger@ubuntu:/mnt/VMDisk1/kernel/goldfish$ cd arch/
alpha/ blackfin/ frv/ ia64/ microblaze/ openrisc/ s390/ sparc/ unicore32/
arm/ c6x/ h8300/ m32r/ mips/ parisc/ score/ tile/ x86/
avr32/ cris/ hexagon/ m68k/ mn10300/ powerpc/ sh/ um/ xtensa/
tigger@ubuntu:/mnt/VMDisk1/kernel/goldfish/arch/arm/configs$ ll
total 632
drwxr-xr-x 2 tigger tigger 4096 2014-10-14 20:09 ./
drwxr-xr-x 88 tigger tigger 4096 2014-11-01 02:28 ../
-rw-r--r-- 1 tigger tigger 1998 2014-10-11 02:28 acs5k_defconfig
-rw-r--r-- 1 tigger tigger 2011 2014-10-11 02:28 acs5k_tiny_defconfig
-rw-r--r-- 1 tigger tigger 2509 2014-10-14 20:09 afeb9260_defconfig
-rw-r--r-- 1 tigger tigger 2241 2014-10-11 02:28 ag5evm_defconfig
-rw-r--r-- 1 tigger tigger 2617 2014-10-11 02:28 am200epdkit_defconfig
......
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 如想使用goldfish的配置,可以:
//根据goldfish_armv7_defconfig生成.config文件
make goldfish_armv7_defconfig
//调整一些具体细节项
make menuconfig
//然后就可以编译了
make
- 1
- 2
- 3
- 4
- 5
- 6
- 1
- 2
- 3
- 4
- 5
- 6
- .config文件是构建内核所需的内核配置目录,它是在CONFIG_XXX变量中用y,n,m三个状态进行配置的目录,这种形态的内核配置系统叫做kconfig。根据kconfig提供的三个状态(y,n,m)决定是否构建内核相应的模块(Kconfig系统中y,n,m只是bool类型的配置选项,实际上.config中可能有hex/int/bool/tristate/string这多种类型的选项)。
- 状态为y时:相应的二进制文件,与vmlinux链接。
- 状态为m时:不会和vmlinux链接,但作为模块执行编译。
- 状态为n时:不编译。
- mconf通过.config配置文件,生成autoconf.h头文件
tigger@ubuntu:/mnt/VMDisk1/kernel/goldfish$ find ./ -name autoconf.h
./include/linux/autoconf.h
./include/generated/autoconf.h
- 1
- 2
- 3
- 1
- 2
- 3
这两个文件是一样的,也不知道谁复制的谁,大体看一下文件内容:
#define CONFIG_RING_BUFFER 1
#define CONFIG_NF_CONNTRACK_H323 1
#define CONFIG_KERNEL_GZIP 1
#define CONFIG_INPUT_KEYBOARD 1
#define CONFIG_IP_NF_TARGET_REDIRECT 1
#define CONFIG_CRC32 1
#define CONFIG_NF_NAT_PROTO_SCTP 1
#define CONFIG_HAVE_AOUT 1
#define CONFIG_VFP 1
#define CONFIG_AEABI 1
#define CONFIG_FB_TILEBLITTING 1
#define CONFIG_HIGH_RES_TIMERS 1
#define CONFIG_BLK_DEV_DM 1
#define CONFIG_VLAN_8021Q 1
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
可以发现,在.config中定义的的宏,在预处理阶段被处理成了各种#define语句。
- 利用kconfig完成内核配置,准备好.config文件后,即可构建内核。构建内核是指,编译内核,链接各个二进制文件,最终生成一个二进制文件zImage的一系列过程。
- 从linux2.6开始,内核采用kbuild系统来进行编译了,kbuild是指上是一堆脚本的组合。
linux内核Makefile分类:
* Kernel Makefile: 位于内核源代码的顶层目录,也叫Top Makefile。主要用于指定编译内核的目标文件(vmlinux)和模块。在编译内核或模块时,这个文件会被首先读取,并根据内容设置环境变量。
* kbuild Makefile: kbuild系统使用kbuild Makefile来编译内核或模块,Kbuild Makefile指定哪些编译近内核,哪些编译为模块。
* arch Makefile: 位于./arch/$(ARCH)/Makefile,是系统对应平台的Makefile。top makefile会包含这个文件来指定平台相关信息,只有平台开发人员需要关心这个文件。
vmlinux的生成
编译后,vmlinux是在内核目录树的根目录下生成的一个ELF文件,这里以goldfish下执行make为例,查看vmlinux的生成。 当执行make命令的时候,会先扫描内核的根目录的Makefile:
##(后续只列举关键内容),./Makefile
##.PHONY: $(PHONY)是在Makefile最后定义的, .PHONY是将一个目标声明为伪目标,
##这样make在执行规则时不会试图去查找隐含规则来创建他(简单理解不会把_all当
##成一个文件,不会存在如果当前目录存在_all这个文件,而文件不更新,系统不能编译的问题)
##所有这样的文件都加到了.PHONY里面。
PHONY := _all
##_all是编译的默认目标,就是make指令的默认目标
_all:
ifeq ($(KBUILD_EXTMOD),)
##如果没指定编译模块
_all: all
else
##如果指定是编译模块
_all: modules
endif
#如果没指定编译模块,则这里最终编译的就是vmlinux
#(注:在体系结构相关的makefile中一般还有一个all,即zImage)
all: vmlinux
vmlinux: $(vmlinux-lds) $(vmlinux-init) $(vmlinux-main) vmlinux.o $(kallsyms.o) FORCE
##vmlinux-modpost不存在,这里好像是忽略了??
$(call vmlinux-modpost)
##如果if_changed_rule成立则执行rule_vmlinux__
$(call if_changed_rule,vmlinux__)
##删除.old_version
$(Q)rm -f .old_version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
后续会分析其中的各个目标
目标文件 vmlinux.o
vmlinux.o是没有去除符号表的可执行文件,最终生成的vmlinux为真正的内核镜像
-rwxr-xr-x 1 tigger tigger 61M 2014-12-22 01:21 vmlinux*
-rw-r--r-- 1 tigger tigger 109M 2014-12-22 01:21 vmlinux.o
- 1
- 2
- 1
- 2
目标文件 vmlinux.lds
vmlinux.lds是一个链接脚本,是给ld链接器使用的。一般来说,普通程序是不需要指定linker script的,也不需要关心各个section的具体位置。当程序执行时,kernel中的ELF Loader会根据ELF文件头解析可执行文件的各个section,并把他们映射到虚拟地址空间。然而,内核启动时,必须首先确定各个section的具体位置,这就是vmlinux.lds的作用。这个文件必然是体系结构相关的,在arm中有两个连接脚本分别位于:
./arch/arm/kernel/vmlinux.lds(这个是给vmlinux编译用的连接脚本,就是这里面的vmlinux.lds)
./arch/arm/boot/compressed/vmlinux.lds(这个是给zImage编译时候用的连接脚本)
目标文件 kallsyms.o
在2.6内核中,为了更好的调试内核,引入了kallsyms机制。kallsyms把内核中用到的所有函数地址和名称链接到内核文件,当内核启动后,同时加载到内存中。当发生oops时候,内核就会
解析eip位于哪个函数中,然后打印出backtrace信息。内核编译的最后,make会执行:nm -n vmlinux|scripts/kallsyms,其中:
1. nm -n vmlinux负责生成所有的内核符号并按地址排序
2. scripts/kallsyms负责处理这个列表,并生成需要的链接文件tmp_kallsyms%.s
也就是说kallsyms实际上是内核编译完了之后,vmlinux中通过nm命令生成的,所以所有符号地址都包括了,实际上是和System.map是一样的。
而且kallsyms中所有函数的地址,是放在一个全局数组kallsyms_addresses[]中的,如下:
kallsyms_addresses:
PTR _text + 0x180
PTR _text + 0x180
PTR _text + 0x180
PTR _text + 0x194
PTR _text + 0x360
PTR _text + 0x374
PTR _text + 0x484
PTR _text + 0x594
PTR _text + 0x5f4
PTR _text + 0x5f8
PTR _text + 0x60c
PTR _text + 0x624
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
kallsyms_addresses中的每一个表项,都在重定位表中有记录,如果内核发生了重定位,那么kallsyms中的内容也会跟着修改,所以cat /proc/kallsyms的时候总是看到的是真正的函数地址。
kallsyms的整个符号表,最终都会放在kallsyms.o文件中。
#kallsyms也是最终依赖一个文件,这个是.tmp_kallsymsX.o
kallsyms.o := .tmp_kallsyms$(last_kallsyms).o
- 1
- 2
- 1
- 2
目标 vmlinux-init
#./Makefile
vmlinux-init := $(head-y) $(init-y)
- 1
- 2
- 1
- 2
- head-y
#./Makefile
#head-y定义在具体体系结构的makefile中,这句include会载入head-y的定义
include $(srctree)/arch/$(SRCARCH)/Makefile
- 1
- 2
- 3
- 1
- 2
- 3
#./arch/arm/Makefile
#这里的MMUEXT应该是是否开启mmu的意思,如果不开启就是head-nommu.o,开启就是head.o
head-y := arch/arm/kernel/head$(MMUEXT).o \
arch/arm/kernel/init_task.o
- 1
- 2
- 3
- 4
- 1
- 2
- 3
- 4
- init-y
#./Makefile
#一开始init-y是个目录
init-y := init/
#后续把init-y变量中所有符合%/的替换为%/built-in.o,这句之后init-y 被赋值为 init/built-in.o
init-y := $(patsubst %/, %/built-in.o, $(init-y))
- 1
- 2
- 3
- 4
- 5
- 1
- 2
- 3
- 4
- 5
所以最终vmlinux-init 实际上是:
1. arch/arm/kernel/head.o(这是Image/vmlinux的入口代码)。
2. arch/arm/kernel/init_task.o
3. init/built-in.o
三者链接而来的。
目标 vmlinux-main
vmlinux-main := $(core-y) $(libs-y) $(drivers-y) $(net-y)
- 1
- 1
- core-y
#./Makefile
core-y := usr/
ifeq ($(KBUILD_EXTMOD),)
core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/
#如果是编译内核的话,core-y最终包含: usr/ kernel/ mm/ fs/ ipc/ security/ crypto/ block/
#目录下的built-in.o。编译模块的话,就只包含usr/build-in.o。
core-y := $(patsubst %/, %/built-in.o, $(core-y))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 1
- 2
- 3
- 4
- 5
- 6
- 7
#./arch/arm/Makefile
#除此之外,core-y还包含体系结构相关的:arch/arm/kernel、mm、common
#以及具体芯片相关的:mach-xxx,plat-xxx目录下built-in.o文件(如mach-goldfish)。
#(见前面的include $(srctree)/arch/$(SRCARCH)/Makefile),几乎涵盖了所有built-in.o。
machdirs := $(patsubst %,arch/arm/mach-%/,$(machine-y))
platdirs := $(patsubst %,arch/arm/plat-%/,$(plat-y))
core-y += arch/arm/kernel/ arch/arm/mm/ arch/arm/common/
core-y += arch/arm/net/
core-y += $(machdirs) $(platdirs)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- libs-y
#libs-y也是包含具体体系结构相关的库,并且包括lib.a和built-in.o两个文件
#./Makefile
libs-y := lib/
#把$(libs-y)中所有的%/替换为%/lib.a -> libs-y1
libs-y1 := $(patsubst %/, %/lib.a, $(libs-y))
#把$(libs-y)中所有的%/替换为%/built-in.o -> libs-y2
libs-y2 := $(patsubst %/, %/built-in.o, $(libs-y))
##libs-y等于二者的合并
libs-y := $(libs-y1) $(libs-y2)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
#./arch/arm/Makefile
#在libs-y的目录基础上加上arch/arm/lib/这个目录,这是在libs-y1,libs-y2合并前加入的
libs-y := arch/arm/lib/ $(libs-y)
- 1
- 2
- 3
- 1
- 2
- 3
- drivers-y
#./Makefile
drivers-y := drivers/ sound/ firmware/
#drivers, sound, firmware目录的所有built-in.o文件
drivers-y := $(patsubst %/, %/built-in.o, $(drivers-y))
- 1
- 2
- 3
- 4
- 1
- 2
- 3
- 4
#./arch/arm/Makefile
#根据配置文件决定是否加入体系结构相关的驱动
drivers-$(CONFIG_OPROFILE) += arch/arm/oprofile/
- 1
- 2
- 3
- 1
- 2
- 3
- net-y
#./Makefile
net-y := net/
#net目录的built-in.o
net-y := $(patsubst %/, %/built-in.o, $(net-y))
- 1
- 2
- 3
- 4
- 1
- 2
- 3
- 4
总结一下,vmlinux-main是由以下四个目标组成的:
- core-y:
- 包含体系结构无关的usr/ kernel/ mm/ fs/ ipc/ security/ crypto/ block/ 目录下的built-in.o文件(如果是编译module,则只包含usr/built-in.o)。
- 包含体系结构相关的文件,在arm下为arch/arm/kernel/ arch/arm/mm/ arch/arm/common/ arch/arm/net/下的built-in.o。
- 包含具体芯片相关的文件,如arch/arm/plat-%/ arch/arm/mach-%/下的built-in.o。
- libs-y: 包含arch/arm/lib/和 lib/目录下的built-in.o和lib.a文件。
- drivers-y: 包含drivers/ sound/ firmware/以及arch/arm/oprofile/(可选)目录下的built-in.o文件。
- net-y: 包含net/built-in.o文件。
vmlinux的生成过程规则: rule_vmlinux__
define rule_vmlinux__
:
#makefile -n的时候只是打印命令不会执行,这个+号表示始终执行
#这货生成.version文件旧的.version存到.old_version,内容为"1"
$(if $(CONFIG_KALLSYMS),,+$(call cmd,vmlinux_version))
#调用cmd_vmlinux__命令,这个命令实际上就是将vmlinux的一堆依赖目标,连接为vmlinux
$(call cmd,vmlinux__)
#如果当前$@为DIR/vmlinux,则这个命令被存储到DIR/.vmlinux.cmd中
#@D为$@中的目录(DIR),@F为$@中的文件(vmlinux)
$(Q)echo 'cmd_$@ := $(cmd_vmlinux__)' > $(@D)/.$(@F).cmd
#quiet默认为空(有可能为silent_),为空时调用cmd_sysmap
#cmd_sysmap = $(CONFIG_SHELL) $(srctree)/scripts/mksysmap
#这里调用mksysmap来生成System.map,mksysmap就是个脚本,其内容为:
#$NM -n $1 | grep -v '\( [aNUw] \)\|\(__crc_\)\|\( \$[adt]\)' > $2
$(Q)$(if $($(quiet)cmd_sysmap), \
##显示命令
echo ' $($(quiet)cmd_sysmap) System.map' &&) \
$(cmd_sysmap) $@ System.map; \
if [ $$? -ne 0 ]; then \
rm -f $@; \
/bin/false; \
fi;
#应该是再弄一遍符号表出来,比较符号是否正确
$(verify_kallsyms)
endef
define verify_kallsyms
$(Q)$(if $($(quiet)cmd_sysmap), \
echo ' $($(quiet)cmd_sysmap) .tmp_System.map' &&) \
$(cmd_sysmap) .tmp_vmlinux$(last_kallsyms) .tmp_System.map
$(Q)cmp -s System.map .tmp_System.map || \
(echo Inconsistent kallsyms data; \
echo This is a bug - please report about it; \
echo Try "make KALLSYMS_EXTRA_PASS=1" as a workaround; \
rm .tmp_kallsyms* ; /bin/false )
endef
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
rule_vmlinux__ -> cmd_vmlinux__
#?=是 如果没有被复制,则等于,这里是调用LD连接vmlinux所需的各种文件
#LDFLAGS,LDFLAGS_vmlinux这些变量会作为LD的链接参数
#-o $@指定最终生成的文件为vmlinux
cmd_vmlinux__ ?= $(LD) $(LDFLAGS) $(LDFLAGS_vmlinux) -o $@ \
# -T指定链接脚本文件为vmlinux-lds 后面跟着的$(vmlinux-init)为一堆目标文件
-T $(vmlinux-lds) $(vmlinux-init) \
##如果ld载入了一个库,发现该库中,有UNDF,未被定义的变量,有了这个参数的指示后,就会在这一堆.a和.o文件里面反复搜索,直至找到为止,否则,如果在已经加载的库中,找不到,就会报错????
--start-group $(vmlinux-main) --end-group \
##从$^中去除$(vmlinux-lds) $(vmlinux-init) $(vmlinux-main) vmlinux.o FORCE中的字符,并返回结果,这里的结果就是.tmp_kallsyms2.o(没用kallsyms.o)
$(filter-out $(vmlinux-lds) $(vmlinux-init) $(vmlinux-main) vmlinux.o FORCE ,$^)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
rule_vmlinux生成的vmlinux.cmd:
#在mt6582下,vmlinux.cmd如下:
cmd_vmlinux :=
arm-linux-androideabi-ld.bfd \ #$(LD)
-EL -p --no-undefined -X --emit-relocs --build-id \ #$LDFLAGS) $(LDFLAGS_vmlinux)
-o vmlinux \ #$-o $@
-T arch/arm/kernel/vmlinux.lds \ #-T $(vmlinux-lds)
arch/arm/kernel/head.o arch/arm/kernel/init_task.o init/built-in.o \ #$(vmlinux-init)
--start-group \
usr/built-in.o arch/arm/vfp/built-in.o arch/arm/kernel/built-in.o arch/arm/mm/built-in.o arch/arm/common/built-in.o arch/arm/net/built-in.o mediatek/platform/mt6582/kernel/core/built-in.o kernel/built-in.o mm/built-in.o fs/built-in.o ipc/built-in.o security/built-in.o crypto/built-in.o block/built-in.o arch/arm/lib/lib.a lib/lib.a arch/arm/lib/built-in.o lib/built-in.o drivers/built-in.o sound/built-in.o firmware/built-in.o mediatek/kernel/built-in.o mediatek/custom/out/kernel/built-in.o mediatek/platform/mt6582/kernel/drivers/built-in.o aliyun/security/built-in.o net/built-in.o \ #$(vmlinux-main)
--end-group \
.tmp_kallsyms2.o #$(filter-out $(vmlinux-lds) $(vmlinux-init) $(vmlinux-main) vmlinux.o FORCE ,$^)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
也就是说vmlinux实际上是由vmlinux.lds 连接vmlinux-init, vmlinux-main和.tmp_kallsyms2.o而成的,与vmlinx.o没有链接的关系!!!
vmlinux.o的生成
#vmlinux.o只依赖于$(modpost-init) $(vmlinux-main)两个目标文件,
##其最终调用的是rule_vmlinux-modpost
vmlinux.o: $(modpost-init) $(vmlinux-main) FORCE
$(call if_changed_rule,vmlinux-modpost)
define rule_vmlinux-modpost
:
#调用cmd_vmlinux-modpost,这个函数是用来链接生成vmlinux.o的
+$(call cmd,vmlinux-modpost)
#实际上调用的是make -f $(srctree)/scripts/Makefile.modpost vmlinux.o
$(Q)$(MAKE) -f $(srctree)/scripts/Makefile.modpost $@
#dot-target是在$@的前面加个.,这里就是.vmlinux.o.cmd,这里是
#将命令存储到.vmlinux.o.cmd
$(Q)echo 'cmd_$@ := $(cmd_vmlinux-modpost)' > $(dot-target).cmd
endif
#cmd_vmlinux-modpost负责生成vmlinux.o,其规则和vmlinux的规则差不多
#其差别主要在于,vmlinux.o没有指定--no-undefined编译选项
#没有指定链接脚本,没有指定符号表
cmd_vmlinux-modpost = $(LD) $(LDFLAGS) -r -o $@ \
$(vmlinux-init) --start-group $(vmlinux-main) --end-group \
$(filter-out $(vmlinux-init) $(vmlinux-main) FORCE ,$^)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
vmlinux.o的生成命令(.vmlinux.o.cmd)
cmd_vmlinux.o :=
arm-linux-androideabi-ld.bfd \ #$(LD)
-EL \#$(LDFLAGS)
-r -o vmlinux.o \# -r -o $@ ,-r指定了可重定位的输出文件
arch/arm/kernel/head.o arch/arm/kernel/init_task.o init/built-in.o \#$(vmlinux-init)
--start-group \
usr/built-in.o arch/arm/vfp/built-in.o arch/arm/kernel/built-in.o arch/arm/mm/built-in.o arch/arm/common/built-in.o arch/arm/net/built-in.o mediatek/platform/mt6582/kernel/core/built-in.o kernel/built-in.o mm/built-in.o fs/built-in.o ipc/built-in.o security/built-in.o crypto/built-in.o block/built-in.o arch/arm/lib/lib.a lib/lib.a arch/arm/lib/built-in.o lib/built-in.o drivers/built-in.o sound/built-in.o firmware/built-in.o mediatek/kernel/built-in.o mediatek/custom/out/kernel/built-in.o mediatek/platform/mt6582/kernel/drivers/built-in.o aliyun/security/built-in.o net/built-in.o \#$(vmlinux-main)
--end-group
#\$(filter-out $(vmlinux-init) $(vmlinux-main) FORCE ,$^)为空
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
make -f $(srctree)/scripts/Makefile.modpost vmlinux.o
rule_vmlinux-modpost生成vmlinux.o后会调用
$(Q)$(MAKE) -f $(srctree)/scripts/Makefile.modpost $@,解析后就是
- 1
- 1
解析后就是:
make -f $(srctree)/scripts/Makefile.modpost vmlinux.o
- 1
- 1
#./$(srctree)/scripts/Makefile.modpost
modpost = scripts/mod/modpost \
$(if $(CONFIG_MODVERSIONS),-m) \
$(if $(CONFIG_MODULE_SRCVERSION_ALL),-a,) \
$(if $(KBUILD_EXTMOD),-i,-o) $(kernelsymfile) \
$(if $(KBUILD_EXTMOD),-I $(modulesymfile)) \
$(if $(KBUILD_EXTRA_SYMBOLS), $(patsubst %, -e %,$(KBUILD_EXTRA_SYMBOLS))) \
$(if $(KBUILD_EXTMOD),-o $(modulesymfile)) \
$(if $(CONFIG_DEBUG_SECTION_MISMATCH),,-S) \
$(if $(KBUILD_EXTMOD)$(KBUILD_MODPOST_WARN),-w) \
$(if $(cross_build),-c)
#根据make -f的指定,生成vmlinux.o目标
vmlinux.o: FORCE
$(call cmd,kernel-mod)
#最终调用的命令如:scripts/mod/modpost -o $(srctree)/Module.symvers -S vmlinux.o
#实际上这一句makefile是用来生成Module.symvers文件的,这个文件是对内核函数做crc签名校验的
cmd_kernel-mod = $(modpost) $@
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
Module.symvers文件只有在开启CONFIG_MODVERSIONS才生效的,否则里面的crc全是0,我这里没有开,内容如下:
<CRC> <Symbol> <module> <type>
0x00000000 cfg80211_send_rx_assoc vmlinux EXPORT_SYMBOL
0x00000000 generic_file_splice_write vmlinux EXPORT_SYMBOL
0x00000000 set_anon_super vmlinux EXPORT_SYMBOL
0x00000000 kmem_cache_alloc vmlinux EXPORT_SYMBOL
0x00000000 replace_page_cache_page vmlinux EXPORT_SYMBOL_GPL
0x00000000 __cond_resched_softirq vmlinux EXPORT_SYMBOL
0x00000000 mt_fh_popod_restore vmlinux EXPORT_SYMBOL
0x00000000 i2c_put_adapter vmlinux EXPORT_SYMBOL
0x00000000 rtc_class_open vmlinux EXPORT_SYMBOL_GPL
0x00000000 scsi_sense_key_string vmlinux EXPORT_SYMBOL
......
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
总结一下:
- vmlinux依赖于目标文件vmlinux.o,但是二者的生成没有直接关系,即vmlinux并不链接vmlinux.o文件
- vmlinux和vmlinux.o的区别主要在于:
- vmlinux指定了–no-undefined编译选项,不可以有未决符号,而vmlinux.o可以有。
- vmlinux指定了链接脚本vmlinux.lds,vmlinux.o没有连接脚本。
- vmlinux连接了符号表*kallsyms*.o文件,vmlinux.o没有连接符号表。
- vmlinux没指定-r选项,vmlinux.o指定了-r选项,-r是用来生成可重定位的目标文件用的,这个选项导致了vmlinux.o虽然链接的较vmlinux少,但实际体积比vmlinux要大(在我编译出的镜像中,vmlinux大小61MB,包含56个段; vmlinx.o大小109MB,包含12119个段,其中有6061个段为重定位段,另外有5981个段为各种ksy*段,如__ksymtab_strings。
zImage的生成
#./arch/arm/Makefile
#在根目录makefile中的include $(srctree)/arch/$(SRCARCH)/Makefile会include当前文件
#这是all出现的第二个目标,all的所有目标会合并,合并后就是vmlinux和zImage
all: $(KBUILD_IMAGE)
KBUILD_IMAGE := zImage
#zImage还依赖于vmlinux
zImage Image xipImage bootpImage uImage: vmlinux
#此命令解析后类似:
#make -f scripts/Makefile.build obj=arch/arm/boot MACHINE = XXX arch/arm/boot/zImage
#调用makefile.build作为makefile的脚本,obj和MACHINE都为变量
#要build的目标为arch/arm/boot/zImage,这个就是target
$(Q)$(MAKE) $(build)=$(boot) MACHINE=$(MACHINE) $(boot)/$@
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
#./scripts/makefile.build
#初始化各个变量为空
obj-y :=
obj-m :=
lib-y :=
lib-m :=
##包含配置文件,没有就算了(这里没有)
-include include/config/auto.conf
##导入内部函数
include scripts/Kbuild.include
src := $(obj)
##这一句是在src目录下找Makefile文件,对于arch/arm/boot来说,最终找到的是
##arch/arm/boot/Makefile
kbuild-dir := $(if $(filter /%,$(src)),$(src),$(srctree)/$(src))
kbuild-file := $(if $(wildcard $(kbuild-dir)/Kbuild),$(kbuild-dir)/Kbuild,$(kbuild-dir)/Makefile)
##所以对于arch/arm/boot来说,最终这里include了./arch/arm/boot/Makefile
##最终要编译的目标arch/arm/boot/zImage就是在./arch/arm/boot/Makefile中定义的
include $(kbuild-file)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
#./arch/arm/boot/Makefile
ifneq ($(MACHINE),)
#这里一般记录 zreladdr-y,params_phys-y,initrd_phys-y 等信息
include $(srctree)/$(MACHINE)/Makefile.boot
endif
ZRELADDR := $(zreladdr-y)
PARAMS_PHYS := $(params_phys-y)
INITRD_PHYS := $(initrd_phys-y)
#这个文件是被include进来的,$(obj)这里就是arch/arm/boot
#这个$(obj)/zImage展开的话就是arch/arm/boot/zImage
$(obj)/zImage: $(obj)/compressed/vmlinux FORCE
##这里是向if_changed传入了objcopy,if_changed会给其加上cmd_开头的头,如果这里得到执行
##最终执行的会是cmd_objcopy
$(call if_changed,objcopy)
@echo ' Kernel: $@ is ready'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
#./scripts/makefile.lib
cmd_objcopy = $(OBJCOPY) $(OBJCOPYFLAGS) $(OBJCOPYFLAGS_$(@F)) $< $@
- 1
- 2
- 1
- 2
所以zImage实际上是依赖于$(obj)/compressed/vmlinux的,是后者执行了一个objcopy -binary过来的($(obj)/compressed/vmlinux并不是vmlinux,前者是内核Image压缩为piggy.gz后再次生成的一个压缩后的elf镜像,而后者是内核的镜像,$(obj)/compressed/vmlinux大小约为2.XMB,后面也称其为vmlinux(小),而另一个称为vmlinux(大))其命令行如下:
cmd_arch/arm/boot/zImage := arm-linux-androideabi-objcopy -O binary -R .comment -S arch/arm/boot/compressed/vmlinux arch/arm/boot/zImage
- 1
- 1
目标 $(obj)/compressed/vmlinux
#./arch/arm/boot/Makefile
#vmlinux(小)依赖于Image
$(obj)/compressed/vmlinux: $(obj)/Image FORCE
#这句和前面类似,还是make -f makefile.build
#最终include arch/arm/boot/compressed/makefile
#目标$(obj)/compressed/vmlinux定义在arch/arm/boot/compressed/makefile中
$(Q)$(MAKE) $(build)=$(obj)/compressed $@
#Image又依赖于vmlinux(大)
$(obj)/Image: vmlinux FORCE
#Image同样是vmlinux(大)通过objcopy -binary过来的,.Image.cmd如下:
#cmd_arch/arm/boot/Image := arm-linux-androideabi-objcopy \
#-O binary -R .comment -S vmlinux arch/arm/boot/Image
$(call if_changed,objcopy)
@echo ' Kernel: $@ is ready'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
#./arch/arm/boot/compress/Makefile
HEAD = head.o
OBJS =
#这个OBJS根据不同CONFIG还可能有多个.o
OBJS += string.o
lib1funcs = $(obj)/lib1funcs.o
ashldi3 = $(obj)/ashldi3.o
#这里是piggy.gzip,这个文件实际上就是压缩了Image,再加上piggy.S编译来的
#这里的suffix_y最终执行的是cmd_gzip(./script/makefile.lib)
$(obj)/piggy.$(suffix_y): $(obj)/../Image FORCE
$(call if_changed,$(suffix_y))
#piggy.gzip.o依赖于piggy.gzip,这只是依赖关系,默认没有编译脚本,所以
#默认编译的是piggy.gzip.S
$(obj)/piggy.$(suffix_y).o: $(obj)/piggy.$(suffix_y) FORCE
#vmlinux(小)也是有个自己的链接脚本vmlinux.lds的,这个和vmlinux(大)的是不同的两个脚本。
$(obj)/vmlinux: $(obj)/vmlinux.lds $(obj)/$(HEAD) $(obj)/piggy.$(suffix_y).o \
$(addprefix $(obj)/, $(OBJS)) $(lib1funcs) $(ashldi3) FORCE
@$(check_for_multiple_zreladdr)
$(call if_changed,ld)
@$(check_for_bad_syms)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
文件piggy.gzip.s
#此文件直接将piggy.zip包含进来了
.section .piggydata,#alloc
.globl input_data
input_data:
.incbin "arch/arm/boot/compressed/piggy.gzip"
.globl input_data_end
input_data_end:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 1
- 2
- 3
- 4
- 5
- 6
- 7
zImage的生成流程图
从vmlinux到zImage的步骤如图:
*.cmd
- 在构建内核时,各个*.o的目录下都有一个.*.cmd,这个文件是记录这个.o最终执行的编译命令的,如vmlinux.cmd和.vmlinux.o.cmd,从vmlinux到zImage的步骤总结如下:
//1.vmlinux(61MB)->Image(5.1M)
//./arch/arm/boot/.Image.cmd
cmd_arch/arm/boot/Image := arm-eabi-objcopy \
-O binary -R .comment -S vmlinux arch/arm/boot/Image
//2. Image(5.1MB)->piggy.gzip(1.7MB)(gzip -9 压缩)
//./arch/arm/boot/compressed/.piggy.gz.cmd
cmd_arch/arm/boot/compressed/piggy.gz := gzip -f -9 \
< arch/arm/boot/compressed/../Image > \
arch/arm/boot/compressed/piggy.gz
//3. piggy.gzip(1.7MB)->piggy.o(1.7MB)
//实际上是将piggy.gz通过piggy.S编译进piggy.o文件中,piggy.S文件仅有6行
//./arch/arm/boot/compressed/.piggy.o.cmd
//4. head.o 、piggy.o 、misc.o,piggy.o -> vmlinux(2.6MB)
//这个vmlinux是在./arch/arm/boot/compressed目录下的,且经过压缩且含有自解压代码的内核。
//./arch/arm/boot/compressed/.vmlinux.cmd
cmd_arch/arm/boot/compressed/vmlinux := arm-eabi-ld -EL\
--defsym _kernel_bss_size=1419856 \
--defsym zreladdr=0x00008000 \
-p --no-undefined -X -T \
arch/arm/boot/compressed/vmlinux.lds \
arch/arm/boot/compressed/head.o \
arch/arm/boot/compressed/piggy.gzip.o \
arch/arm/boot/compressed/misc.o \
arch/arm/boot/compressed/decompress.o \
arch/arm/boot/compressed/string.o \
arch/arm/boot/compressed/lib1funcs.o \
arch/arm/boot/compressed/ashldi3.o \
-o arch/arm/boot/compressed/vmlinux
//5. vmlinux(2.6MB)->zImage(2.5MB)
//将arch/arm/boot/compressed/vmlinux去除调试信息、注释、符号表等内容,生成arch/arm/boot/zImage,这是一个可以使用的linux内核映像文件了,一个linux内核镜像,最终约2.5MB大小
//./arch/arm/boot/.zImage.cmd
cmd_arch/arm/boot/zImage := arm-eabi-objcopy \
-O binary -R .comment \
-S arch/arm/boot/compressed/vmlinux \
arch/arm/boot/zImage
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
//vmlinux.lds.s用于对ld的输出进行排版
//指定一个特定的输出机器架构,可以使用arm-XXX-objdump -f来查看一个文件的机器架构
OUTPUT_ARCH(arm)
//ENTRY用来设置程序的入口点
ENTRY(_start)
SECTIONS
{
//这个.代表默认的地址计数器,如果一个段没指定地址,就用当前地址计数
//器的默认地址,这个地址在每次应用于一个段之后,会自加。
. = 0;
_text = .;
.text : {
//_start是程序入口地址,被放在了0x00000000的位置,从此可以反向推出,此芯片的上电启动地址为0x0000000,这个vmlinux.lds用于
//生成那个2.6MB的vmlinux,所以这个0x00000000也是最终镜像zImage的启动地址。
_start = .;
*(.start)
*(.text)
*(.text.*)
*(.fixup)
*(.gnu.warning)
*(.glue_7t)
*(.glue_7)
}
.rodata : {
*(.rodata)
*(.rodata.*)
}
.piggydata : {
*(.piggydata)
}
. = ALIGN(4);
_etext = .;
.got.plt : { *(.got.plt) }
_got_start = .;
.got : { *(.got) }
_got_end = .;
.pad : { BYTE(0); . = ALIGN(8); }
_edata = .;
. = ALIGN(8);
__bss_start = .;
.bss : { *(.bss) }
_end = .;
. = ALIGN(8);
.stack : { *(.stack) }
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52