LibTorch之优化器

SGD

torch::optim::SGD optimizer(net->parameters(), /*lr=*/0.01);

官方案例使用

#include <torch/torch.h>
// Use one of many "standard library" modules.
torch::nn::Linear fc1{nullptr}, fc2{nullptr}, fc3{nullptr};

// Define a new Module.
struct Net : torch::nn::Module {
Net() {
// Construct and register two Linear submodules.
fc1 = register_module("fc1", torch::nn::Linear(784, 64));
fc2 = register_module("fc2", torch::nn::Linear(64, 32));
fc3 = register_module("fc3", torch::nn::Linear(32, 10));
}

// Implement the Net's algorithm.
torch::Tensor forward(torch::Tensor x) {
// Use one of many tensor manipulation functions.
x = torch::relu(fc1->forward(x.reshape({x.size(0), 784})));
x = torch::dropout(x, /*p=*/0.5, /*train=*/is_training());
x = torch::relu(fc2->forward(x));
x = torch::log_softmax(fc3->forward(x), /*dim=*/1);
return x;
}


};

int main() {
// Create a new Net.
auto net = std::make_shared<Net>();

// Create a multi-threaded data loader for the MNIST dataset.
auto data_loader = torch::data::make_data_loader(
torch::data::datasets::MNIST("./data").map(
torch::data::transforms::Stack<>()),
/*batch_size=*/64);

// Instantiate an SGD optimization algorithm to update our Net's parameters.
torch::optim::SGD optimizer(net->parameters(), /*lr=*/0.01);

for (size_t epoch = 1; epoch <= 10; ++epoch) {
size_t batch_index = 0;
// Iterate the data loader to yield batches from the dataset.
for (auto& batch : *data_loader) {
// Reset gradients.
optimizer.zero_grad();
// Execute the model on the input data.
torch::Tensor prediction = net->forward(batch.data);
// Compute a loss value to judge the prediction of our model.
torch::Tensor loss = torch::nll_loss(prediction, batch.target);
// Compute gradients of the loss w.r.t. the parameters of our model.
loss.backward();
// Update the parameters based on the calculated gradients.
optimizer.step();
// Output the loss and checkpoint every 100 batches.
if (++batch_index % 100 == 0) {
std::cout << "Epoch: " << epoch << " | Batch: " << batch_index
<< " | Loss: " << loss.item<float>() << std::endl;
// Serialize your model periodically as a checkpoint.
torch::save(net, "net.pt");
}
}
}
}