t f r e c o r d 案 例 tfrecord案例 tfrecord

import tensorflow as tf
import os
print(tf.__version__)
data_dir = './datasets'
train_cats_dir = data_dir + '/train/cats/'
train_dogs_dir = data_dir + '/train/dogs/'


train_tfrecord_file = data_dir + '/train/train.tfrecords'



test_cats_dir = data_dir + '/valid/cats/'
test_dogs_dir = data_dir + '/valid/dogs/'
test_tfrecord_file = data_dir + '/valid/test.tfrecords'
将数据集存储为 TFRecord 文件
train_cat_filenames = [train_cats_dir + filename for filename in os.listdir(train_cats_dir)]
train_dog_filenames = [train_dogs_dir + filename for filename in os.listdir(train_dogs_dir)]
train_filenames = train_cat_filenames + train_dog_filenames

train_labels = [0] * len(train_cat_filenames) + [1] * len(train_dog_filenames)  # 将 cat 类的标签设为0,dog 类的标签设为1


#image 文件名字
#label 
with tf.io.TFRecordWriter(train_tfrecord_file) as writer:
    for filename, label in zip(train_filenames, train_labels):
        
        image = open(filename, 'rb').read()     # 读取数据集图片到内存,image 为一个 Byte 类型的字符串
        
        
        feature = {                             # 建立 tf.train.Feature 字典
            'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image])),  # 图片是一个 Bytes 对象
            'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[label]))   # 标签是一个 Int 对象
        }
        
        example = tf.train.Example(features=tf.train.Features(feature=feature)) # 通过字典建立 Example
        writer.write(example.SerializeToString())   # 将Example序列化并写入 TFRecord 文件

test_cat_filenames = [test_cats_dir + filename for filename in os.listdir(test_cats_dir)]
test_dog_filenames = [test_dogs_dir + filename for filename in os.listdir(test_dogs_dir)]
test_filenames = test_cat_filenames + test_dog_filenames
test_labels = [0] * len(test_cat_filenames) + [1] * len(test_dog_filenames)  # 将 cat 类的标签设为0,dog 类的标签设为1
with tf.io.TFRecordWriter(test_tfrecord_file) as writer:
    for filename, label in zip(test_filenames, test_labels):
        image = open(filename, 'rb').read()     # 读取数据集图片到内存,image 为一个 Byte 类型的字符串
        feature = {                             # 建立 tf.train.Feature 字典
            'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image])),  # 图片是一个 Bytes 对象
            'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[label]))   # 标签是一个 Int 对象
        }
        example = tf.train.Example(features=tf.train.Features(feature=feature)) # 通过字典建立 Example
        serialized = example.SerializeToString() #将Example序列化
        writer.write(serialized)   # 写入 TFRecord 文件
读取 TFRecord 文件
train_dataset = tf.data.TFRecordDataset(train_tfrecord_file)    # 读取 TFRecord 文件
feature_description = { # 定义Feature结构,告诉解码器每个Feature的类型是什么
    'image': tf.io.FixedLenFeature([], tf.string),
    
    'label': tf.io.FixedLenFeature([], tf.int64),
}
def _parse_example(example_string): # 将 TFRecord 文件中的每一个序列化的 tf.train.Example 解码
    feature_dict = tf.io.parse_single_example(example_string, feature_description)
    feature_dict['image'] = tf.io.decode_jpeg(feature_dict['image'])    # 解码JPEG图片
    feature_dict['image'] = tf.image.resize(feature_dict['image'], [256, 256]) / 255.0
    return feature_dict['image'], feature_dict['label']
train_dataset = train_dataset.map(_parse_example)
# for image,label in train_dataset.take(1):
#     print(image.shape,label)
    

tfrecord案例_读取数据



batch_size = 32

train_dataset = train_dataset.shuffle(buffer_size=23000)    
train_dataset = train_dataset.batch(batch_size)
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)

#(32,256,256,3) ()

test_dataset = tf.data.TFRecordDataset(test_tfrecord_file)    # 读取 TFRecord 文件
test_dataset = test_dataset.map(_parse_example)
test_dataset = test_dataset.batch(batch_size)

class CNNModel(tf.keras.models.Model):
    def __init__(self):
        super(CNNModel, self).__init__()
        self.conv1 = tf.keras.layers.Conv2D(32, 3, activation='relu')
        self.maxpool1 = tf.keras.layers.MaxPooling2D()
        self.conv2 = tf.keras.layers.Conv2D(32, 5, activation='relu')
        self.maxpool2 = tf.keras.layers.MaxPooling2D()
        self.flatten = tf.keras.layers.Flatten()
        self.d1 = tf.keras.layers.Dense(64, activation='relu')
        self.d2 = tf.keras.layers.Dense(2, activation='softmax')

    def call(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)       
        x = self.flatten(x)
        x = self.d1(x)
        x = self.d2(x)
        return x

learning_rate = 0.001
model = CNNModel()

loss_object = tf.keras.losses.SparseCategoricalCrossentropy()


optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

#batch
@tf.function
def train_step(images, labels):
    with tf.GradientTape() as tape:
        predictions = model(images)
        loss = loss_object(labels, predictions)
    gradients = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(gradients, model.trainable_variables))

    train_loss(loss) #update
    train_accuracy(labels, predictions)#update

@tf.function
def test_step(images, labels):
    predictions = model(images)
    t_loss = loss_object(labels, predictions)

    test_loss(t_loss)
    test_accuracy(labels, predictions)


EPOCHS=10
for epoch in range(EPOCHS):
    # 在下一个epoch开始时,重置评估指标
    train_loss.reset_states()
    train_accuracy.reset_states()
    test_loss.reset_states()
    test_accuracy.reset_states()

    for images, labels in train_dataset:
        train_step(images, labels) #mini-batch 更新

    for test_images, test_labels in test_dataset:
        test_step(test_images, test_labels)

    template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
    print(template.format(epoch + 1,
                          train_loss.result(),
                          train_accuracy.result() * 100,
                          test_loss.result(),
                          test_accuracy.result() * 100
                         ))

tfrecord案例_字符串_02