Loss_特征点

Loss_像素点_02

1.计算anchor的iou

计算九个anchor框和真实框的iou

2.计算网格位置

3.填充正样本

把真实样本的信息填充到target里面去

4.删选负样本

把不是负样本的删除掉,否则负样本太多


Loss_像素点_03

1.遍历Yolo Head(78,38,19)

2.构造掩码

mask:[1,3,19,19]=0 正样本掩码,首先全赋值为0,如果为正样本,则赋值为1
noobj_mask: [1,3,19,19]=1 负样本掩码,首先全赋值为1,假设没有物体,全是负样本,然后赋值为0

tbox:[1,3,19,19, 4] =0
tconf:[1,3,19,19] = 0
tcls::[1,3,19,19,num_Class] =0

3.记录当前head对应的3个anchors的绝对序号

4.计算真实label和9个anchors的iou,找出序号

找出序号,计算相对位置,用来计算网格位置i,j

5.填充掩码

填充掩码,一定要有i,j和相对anchor序号,i,j通过target获得,相对序号通过anchors和target共同获得


1.通过target,获得ij
2.通过target和anchors,计算iou,取最大iou,获得绝对的anchor序号,进而计算出相对序号
3.通过ij和相对序号,进行掩码填充


Loss_像素点_04

Loss_像素点_05

6.删选负样本,将摇摆不定的正样本和负样本之间的样本删除,使之不参与损失的计算


获得预测值


1.预测值和target计算他们之间的iou
2.通过阈值删选iou,删除摇摆不定的样本
3.获得负样本的掩码


返回预测值和负样本掩码


Loss_赋值_06

Loss_宽高_07

Loss_ide_08
Loss_特征点_09

import cv2  
from random import shuffle
import numpy as np
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from PIL import Image
from utils.utils import bbox_iou, merge_bboxes

def iou(_box_a, _box_b):
    b1_x1, b1_x2 = _box_a[:, 0] - _box_a[:, 2] / 2, _box_a[:, 0] + _box_a[:, 2] / 2
    b1_y1, b1_y2 = _box_a[:, 1] - _box_a[:, 3] / 2, _box_a[:, 1] + _box_a[:, 3] / 2
    b2_x1, b2_x2 = _box_b[:, 0] - _box_b[:, 2] / 2, _box_b[:, 0] + _box_b[:, 2] / 2
    b2_y1, b2_y2 = _box_b[:, 1] - _box_b[:, 3] / 2, _box_b[:, 1] + _box_b[:, 3] / 2
    box_a = torch.zeros_like(_box_a)
    box_b = torch.zeros_like(_box_b)
    box_a[:, 0], box_a[:, 1], box_a[:, 2], box_a[:, 3] = b1_x1, b1_y1, b1_x2, b1_y2
    box_b[:, 0], box_b[:, 1], box_b[:, 2], box_b[:, 3] = b2_x1, b2_y1, b2_x2, b2_y2
    A = box_a.size(0)
    B = box_b.size(0)
    max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
                       box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
    min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
                       box_b[:, :2].unsqueeze(0).expand(A, B, 2))
    inter = torch.clamp((max_xy - min_xy), min=0)

    inter = inter[:, :, 0] * inter[:, :, 1]
    # 计算先验框和真实框各自的面积
    area_a = ((box_a[:, 2]-box_a[:, 0]) *
              (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter)  # [A,B]
    area_b = ((box_b[:, 2]-box_b[:, 0]) *
              (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter)  # [A,B]
    # 求IOU
    union = area_a + area_b - inter
    return inter / union  # [A,B]
#---------------------------------------------------#
#   平滑标签
#---------------------------------------------------#
def smooth_labels(y_true, label_smoothing,num_classes):
    return y_true * (1.0 - label_smoothing) + label_smoothing / num_classes

def box_ciou(b1, b2):
    """
    输入为:
    ----------
    b1: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
    b2: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh

    返回为:
    -------
    ciou: tensor, shape=(batch, feat_w, feat_h, anchor_num, 1)
    """
    # 求出预测框左上角右下角
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh/2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half
    # 求出真实框左上角右下角
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh/2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    # 求真实框和预测框所有的iou
    intersect_mins = torch.max(b1_mins, b2_mins)
    intersect_maxes = torch.min(b1_maxes, b2_maxes)
    intersect_wh = torch.max(intersect_maxes - intersect_mins, torch.zeros_like(intersect_maxes))
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    union_area = b1_area + b2_area - intersect_area
    iou = intersect_area / torch.clamp(union_area,min = 1e-6)

    # 计算中心的差距
    center_distance = torch.sum(torch.pow((b1_xy - b2_xy), 2), axis=-1)
    
    # 找到包裹两个框的最小框的左上角和右下角
    enclose_mins = torch.min(b1_mins, b2_mins)
    enclose_maxes = torch.max(b1_maxes, b2_maxes)
    enclose_wh = torch.max(enclose_maxes - enclose_mins, torch.zeros_like(intersect_maxes))
    # 计算对角线距离
    enclose_diagonal = torch.sum(torch.pow(enclose_wh,2), axis=-1)
    ciou = iou - 1.0 * (center_distance) / torch.clamp(enclose_diagonal,min = 1e-6)
    
    v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(b1_wh[..., 0]/torch.clamp(b1_wh[..., 1],min = 1e-6)) - torch.atan(b2_wh[..., 0]/torch.clamp(b2_wh[..., 1],min = 1e-6))), 2)
    alpha = v / torch.clamp((1.0 - iou + v),min=1e-6)
    ciou = ciou - alpha * v
    return ciou
  
def clip_by_tensor(t,t_min,t_max):
    t=t.float()
    result = (t >= t_min).float() * t + (t < t_min).float() * t_min
    result = (result <= t_max).float() * result + (result > t_max).float() * t_max
    return result

def MSELoss(pred,target):
    return (pred-target)**2

def BCELoss(pred,target):
    epsilon = 1e-7
    pred = clip_by_tensor(pred, epsilon, 1.0 - epsilon)
    output = -target * torch.log(pred) - (1.0 - target) * torch.log(1.0 - pred)
    return output

class YOLOLoss(nn.Module):
    def __init__(self, anchors, num_classes, img_size, label_smooth=0, cuda=True):
        super(YOLOLoss, self).__init__()
        self.anchors = anchors
        self.num_anchors = len(anchors)
        self.num_classes = num_classes
        self.bbox_attrs = 5 + num_classes
        self.img_size = img_size
        self.feature_length = [img_size[0]//8,img_size[0]//16,img_size[0]//32]
        self.label_smooth = label_smooth

        self.ignore_threshold = 0.7
        self.lambda_conf = 1.0
        self.lambda_cls = 1.0
        self.lambda_loc = 1.0
        self.cuda = cuda

    def forward(self, input, targets=None):
        # input为bs,3*(5+num_classes),13,13
        
        # 一共多少张图片
        bs = input.size(0)
        # 特征层的高
        in_h = input.size(2)
        # 特征层的宽
        in_w = input.size(3)

        # 计算步长
        # 每一个特征点对应原来的图片上多少个像素点
        # 如果特征层为13x13的话,一个特征点就对应原来的图片上的32个像素点
        stride_h = self.img_size[1] / in_h
        stride_w = self.img_size[0] / in_w

        # 把先验框的尺寸调整成特征层大小的形式
        # 计算出先验框在特征层上对应的宽高
        scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in self.anchors]
        # bs,3*(5+num_classes),13,13 -> bs,3,13,13,(5+num_classes)
        prediction = input.view(bs, int(self.num_anchors/3),
                                self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous()
        
        # 对prediction预测进行调整
        conf = torch.sigmoid(prediction[..., 4])  # Conf
        pred_cls = torch.sigmoid(prediction[..., 5:])  # Cls pred.

        # 找到哪些先验框内部包含物体
        mask, noobj_mask, t_box, tconf, tcls, box_loss_scale_x, box_loss_scale_y = self.get_target(targets, scaled_anchors,in_w, in_h,self.ignore_threshold)

        noobj_mask, pred_boxes_for_ciou = self.get_ignore(prediction, targets, scaled_anchors, in_w, in_h, noobj_mask)

        if self.cuda:
            mask, noobj_mask = mask.cuda(), noobj_mask.cuda()
            box_loss_scale_x, box_loss_scale_y= box_loss_scale_x.cuda(), box_loss_scale_y.cuda()
            tconf, tcls = tconf.cuda(), tcls.cuda()
            pred_boxes_for_ciou = pred_boxes_for_ciou.cuda()
            t_box = t_box.cuda()

        box_loss_scale = 2-box_loss_scale_x*box_loss_scale_y
        #  losses.

        ciou = box_ciou( pred_boxes_for_ciou[mask.bool()], t_box[mask.bool()])
        loss_ciou = 1 - ciou
        loss_ciou = loss_ciou * box_loss_scale[mask.bool()]
        # ciou = (1 - box_ciou( pred_boxes_for_ciou[mask.bool()], t_box[mask.bool()]))* box_loss_scale[mask.bool()]

        loss_loc = torch.sum(loss_ciou / bs)
        loss_conf = torch.sum(BCELoss(conf, mask) * mask / bs) + \
                    torch.sum(BCELoss(conf, mask) * noobj_mask / bs)
                    
        # print(smooth_labels(tcls[mask == 1],self.label_smooth,self.num_classes))
        loss_cls = torch.sum(BCELoss(pred_cls[mask == 1], smooth_labels(tcls[mask == 1],self.label_smooth,self.num_classes))/bs)
        # print(loss_loc,loss_conf,loss_cls)
        loss = loss_conf * self.lambda_conf + loss_cls * self.lambda_cls + loss_loc * self.lambda_loc
        return loss, loss_conf.item(), loss_cls.item(), loss_loc.item()

    def get_target(self, target, anchors, in_w, in_h, ignore_threshold):
        # 计算一共有多少张图片
        bs = len(target)
        # 获得先验框
        anchor_index = [[0,1,2],[3,4,5],[6,7,8]][self.feature_length.index(in_w)]
        subtract_index = [0,3,6][self.feature_length.index(in_w)]
        # 创建全是0或者全是1的阵列
        mask = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        noobj_mask = torch.ones(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)

        tx = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        ty = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        tw = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        th = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        t_box = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, 4, requires_grad=False)
        tconf = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        tcls = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, self.num_classes, requires_grad=False)

        box_loss_scale_x = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        box_loss_scale_y = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        for b in range(bs):
            for t in range(target[b].shape[0]):
                # box = [0.2,0.7,0.25,0.4] ---> [gx,gh,gw,gh]  相对于图的偏移,就是原图608*608 / 608 = 1 * 1 ===》 0.2*608 0.7*608 0.25*608
                # box = box * 19 = [3.8,13.3,4.75,7.6]
                # i = int(3.8)=3    j = int(13.3) =13
                # 计算出在特征层上的点位
                gx = target[b][t, 0] * in_w
                gy = target[b][t, 1] * in_h
                
                gw = target[b][t, 2] * in_w
                gh = target[b][t, 3] * in_h

                # 计算出属于哪个网格
                gi = int(gx)
                gj = int(gy)

                # 计算真实框的位置
                gt_box = torch.FloatTensor(np.array([0, 0, gw, gh])).unsqueeze(0)
                
                # 计算出所有先验框的位置
                anchor_shapes = torch.FloatTensor(np.concatenate((np.zeros((self.num_anchors, 2)),
                                                                  np.array(anchors)), 1))
                # 计算重合程度
                anch_ious = bbox_iou(gt_box, anchor_shapes)
               
                # Find the best matching anchor box
                # 计算真实label和9个anchors的IOU,找出序号
                # 假定best_n = 6,那么就落在19的Head上,对应的相对位置是0
                best_n = np.argmax(anch_ious)
                if best_n not in anchor_index:
                    continue
                # Masks
                if (gj < in_h) and (gi < in_w):
                    best_n = best_n - subtract_index
                    # 判定哪些先验框内部真实的存在物体
                    noobj_mask[b, best_n, gj, gi] = 0
                    mask[b, best_n, gj, gi] = 1
                    # 计算先验框中心调整参数
                    tx[b, best_n, gj, gi] = gx
                    ty[b, best_n, gj, gi] = gy
                    # 计算先验框宽高调整参数
                    tw[b, best_n, gj, gi] = gw
                    th[b, best_n, gj, gi] = gh
                    # 用于获得xywh的比例
                    box_loss_scale_x[b, best_n, gj, gi] = target[b][t, 2]
                    box_loss_scale_y[b, best_n, gj, gi] = target[b][t, 3]
                    # 物体置信度
                    tconf[b, best_n, gj, gi] = 1
                    # 种类
                    tcls[b, best_n, gj, gi, int(target[b][t, 4])] = 1
                else:
                    print('Step {0} out of bound'.format(b))
                    print('gj: {0}, height: {1} | gi: {2}, width: {3}'.format(gj, in_h, gi, in_w))
                    continue
        t_box[...,0] = tx
        t_box[...,1] = ty
        t_box[...,2] = tw
        t_box[...,3] = th
        return mask, noobj_mask, t_box, tconf, tcls, box_loss_scale_x, box_loss_scale_y

    def get_ignore(self,prediction,target,scaled_anchors,in_w, in_h,noobj_mask):
        bs = len(target)
        anchor_index = [[0,1,2],[3,4,5],[6,7,8]][self.feature_length.index(in_w)]
        scaled_anchors = np.array(scaled_anchors)[anchor_index]
        # 先验框的中心位置的调整参数
        x = torch.sigmoid(prediction[..., 0])  
        y = torch.sigmoid(prediction[..., 1])
        # 先验框的宽高调整参数
        w = prediction[..., 2]  # Width
        h = prediction[..., 3]  # Height

        FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
        LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor

        # 生成网格,先验框中心,网格左上角
        # grid_x = [1,3,19,19]
        # grid_y = [1,3,19,19]
        grid_x = torch.linspace(0, in_w - 1, in_w).repeat(in_w, 1).repeat(
            int(bs*self.num_anchors/3), 1, 1).view(x.shape).type(FloatTensor)
        grid_y = torch.linspace(0, in_h - 1, in_h).repeat(in_h, 1).t().repeat(
            int(bs*self.num_anchors/3), 1, 1).view(y.shape).type(FloatTensor)

        # 生成先验框的宽高
        anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
        anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
        
        anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape)
        anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape)
        
        # 计算调整后的先验框中心与宽高
        pred_boxes = FloatTensor(prediction[..., :4].shape)
        pred_boxes[..., 0] = x + grid_x
        pred_boxes[..., 1] = y + grid_y
        pred_boxes[..., 2] = torch.exp(w) * anchor_w
        pred_boxes[..., 3] = torch.exp(h) * anchor_h

        for i in range(bs):
            pred_boxes_for_ignore = pred_boxes[i]
            pred_boxes_for_ignore = pred_boxes_for_ignore.view(-1, 4)
            if len(target[i]) > 0:
                gx = target[i][:, 0:1] * in_w
                gy = target[i][:, 1:2] * in_h
                gw = target[i][:, 2:3] * in_w
                gh = target[i][:, 3:4] * in_h
                gt_box = torch.FloatTensor(np.concatenate([gx, gy, gw, gh],-1)).type(FloatTensor)

                anch_ious = iou(gt_box, pred_boxes_for_ignore)
                for t in range(target[i].shape[0]):
                    anch_iou = anch_ious[t].view(pred_boxes[i].size()[:3])
                    noobj_mask[i][anch_iou>self.ignore_threshold] = 0
        return noobj_mask, pred_boxes