Swift语言概览




基本概念


注:这一节的代码源自The Swift Programming Language​ 中的A Swift Tour。




Hello, world


类似于脚本语言,以下的代码即是一个完整的Swift程序。



println("Hello, world")


变量与常量



Swift使用var声明变量,let声明常量。



var myVariable = 42 
myVariable = 50
let myConstant = 42


类型推导

Swift支持类型推导(Type Inference),所以上面的代码不需指定类型,假设须要指定类型:



let explicitDouble : Double = 70


Swift不支持隐式类型转换(Implicitly casting),所以以下的代码须要显式类型转换(Explicitly casting):



let label = "The width is " 
let width = 94
let width = label + String(width)


字符串格式化

Swift使用\(item)的形式进行字符串格式化:



let apples = 3 
let oranges = 5
let appleSummary = "I have \(apples) apples."
let appleSummary = "I have \(apples + oranges) pieces of fruit."



数组和字典


Swift使用[]操作符声明数组(array)和字典(dictionary):



var shoppingList = ["catfish", "water", "tulips", "blue paint"] 
shoppingList[1] = "bottle of water"

var occupations = [
"Malcolm": "Captain",
"Kaylee": "Mechanic",
]
occupations["Jayne"] = "Public Relations"


一般使用初始化器(initializer)语法创建空数组和空字典:


let emptyArray = String[]() 
let emptyDictionary = Dictionary<String, Float>()


假设类型信息已知,则能够使用[]声明空数组,使用[:]声明空字典。




控制流


概览


Swift的条件语句包括if和switch,循环语句包括for-in、for、while和do-while,循环/推断条件不须要括号,但循环/推断体(body)必需括号:



let individualScores = [75, 43, 103, 87, 12] 
var teamScore = 0
for score in individualScores {
if score > 50 {
teamScore += 3
} else {
teamScore += 1
}
}


可空类型


结合if和let,能够方便的处理可空变量(nullable variable)。对于空值,须要在类型声明后加入?显式标明该类型可空。



var optionalString: String? = "Hello" 
optionalString == nil

var optionalName: String? = "John Appleseed"
var gretting = "Hello!"
if let name = optionalName {
gretting = "Hello, \(name)"
}


灵活的switch

Swift中的switch支持各种各样的比較操作:



let vegetable = "red pepper" 
switch vegetable {
case "celery":
let vegetableComment = "Add some raisins and make ants on a log."
case "cucumber", "watercress":
let vegetableComment = "That would make a good tea sandwich."
case let x where x.hasSuffix("pepper"):
let vegetableComment = "Is it a spicy \(x)?"
default:
let vegetableComment = "Everything tastes good in soup."
}


其他循环

for-in除了遍历数组也能够用来遍历字典:



let interestingNumbers = [ 
"Prime": [2, 3, 5, 7, 11, 13],
"Fibonacci": [1, 1, 2, 3, 5, 8],
"Square": [1, 4, 9, 16, 25],
]
var largest = 0
for (kind, numbers) in interestingNumbers {
for number in numbers {
if number > largest {
largest = number
}
}
}
largest



while循环和do-while循环:



var n = 2 
while n < 100 {
n = n * 2
}
n

var m = 2
do {
m = m * 2
} while m < 100
m


Swift支持传统的for循环,此外也能够通过结合..(生成一个区间)和for-in实现相同的逻辑。


var firstForLoop = 0 
for i in 0..3 {
firstForLoop += i
}
firstForLoop

var secondForLoop = 0
for var i = 0; i < 3; ++i {
secondForLoop += 1
}
secondForLoop


注意:Swift除了..还有…:..生成前闭后开的区间,而…生成前闭后闭的区间。



函数和闭包




函数


Swift使用funckeyword声明函数:



func greet(name: String, day: String) -> String { 
return "Hello \(name), today is \(day)."
}
greet("Bob", "Tuesday")


通过元组(Tuple)返回多个值:


func getGasPrices() -> (Double, Double, Double) { 
return (3.59, 3.69, 3.79)
}
getGasPrices()


支持带有变长參数的函数:



func sumOf(numbers: Int...) -> Int { 
var sum = 0
for number in numbers {
sum += number
}
return sum
}
sumOf()
sumOf(42, 597, 12)


函数也能够嵌套函数:


func returnFifteen() -> Int { 
var y = 10
func add() {
y += 5
}
add()
return y
}


作为头等对象,函数既能够作为返回值,也能够作为參数传递:


func makeIncrementer() -> (Int -> Int) { 
func addOne(number: Int) -> Int {
return 1 + number
}
return addOne
}
var increment = makeIncrementer()
increment(7)


func hasAnyMatches(list: Int[], condition: Int -> Bool) -> Bool { 
for item in list {
if condition(item) {
return true
}
}
return false
}
func lessThanTen(number: Int) -> Bool {
return number < 10
}
var numbers = [20, 19, 7, 12]
hasAnyMatches(numbers, lessThanTen)


闭包

本质来说,函数是特殊的闭包,Swift中能够利用{}声明匿名闭包:



numbers.map({ 
(number: Int) -> Int in
let result = 3 * number
return result
})


当闭包的类型已知时,能够使用以下的简化写法:


numbers.map({ number in 3 * number })


此外还能够通过參数的位置来使用參数,当函数最后一个參数是闭包时,能够使用以下的语法:


sort([1, 5, 3, 12, 2]) { $0 > $1 }


类和对象



创建和使用类


Swift使用class创建一个类,类能够包括字段和方法:



class Shape { 
var numberOfSides = 0
func simpleDescription() -> String {
return "A shape with \(numberOfSides) sides."
}
}


创建Shape类的实例,并调用其字段和方法。


var shape = Shape() 
shape.numberOfSides = 7
var shapeDescription = shape.simpleDescription()



通过init构建对象,既能够使用self显式引用成员字段(name),也能够隐式引用(numberOfSides)。



class NamedShape { 
var numberOfSides: Int = 0
var name: String

init(name: String) {
self.name = name
}

func simpleDescription() -> String {
return "A shape with \(numberOfSides) sides."
}
}


使用deinit进行清理工作。



继承和多态


Swift支持继承和多态(override父类方法):



class Square: NamedShape { 
var sideLength: Double

init(sideLength: Double, name: String) {
self.sideLength = sideLength
super.init(name: name)
numberOfSides = 4
}

func area() -> Double {
return sideLength * sideLength
}

override func simpleDescription() -> String {
return "A square with sides of length \(sideLength)."
}
}
let test = Square(sideLength: 5.2, name: "my test square")
test.area()
test.simpleDescription()


注意:假设这里的simpleDescription方法没有被标识为override,则会引发编译错误。



属性


为了简化代码,Swift引入了属性(property),见以下的perimeter字段:



class EquilateralTriangle: NamedShape { 
var sideLength: Double = 0.0

init(sideLength: Double, name: String) {
self.sideLength = sideLength
super.init(name: name)
numberOfSides = 3
}

var perimeter: Double {
get {
return 3.0 * sideLength
}
set {
sideLength = newValue / 3.0
}
}

override func simpleDescription() -> String {
return "An equilateral triagle with sides of length \(sideLength)."
}
}
var triangle = EquilateralTriangle(sideLength: 3.1, name: "a triangle")
triangle.perimeter
triangle.perimeter = 9.9
triangle.sideLength


注意:赋值器(setter)中,接收的值被自己主动命名为newValue。



willSet和didSet


EquilateralTriangle的构造器进行了例如以下操作:


1.为子类型的属性赋值。


2.调用父类型的构造器。


3.改动父类型的属性。




假设不须要计算属性的值,但须要在赋值前后进行一些操作的话,使用willSet和didSet:



class TriangleAndSquare { 
var triangle: EquilateralTriangle {
willSet {
square.sideLength = newValue.sideLength
}
}
var square: Square {
willSet {
triangle.sideLength = newValue.sideLength
}
}
init(size: Double, name: String) {
square = Square(sideLength: size, name: name)
triangle = EquilateralTriangle(sideLength: size, name: name)
}
}
var triangleAndSquare = TriangleAndSquare(size: 10, name: "another test shape")
triangleAndSquare.square.sideLength
triangleAndSquare.square = Square(sideLength: 50, name: "larger square")
triangleAndSquare.triangle.sideLength


从而保证triangle和square拥有相等的sideLength。



调用方法


Swift中,函数的參数名称仅仅能在函数内部使用,但方法的參数名称除了在内部使用外还能够在外部使用(第一个參数除外),比如:



class Counter { 
var count: Int = 0
func incrementBy(amount: Int, numberOfTimes times: Int) {
count += amount * times
}
}
var counter = Counter()
counter.incrementBy(2, numberOfTimes: 7)


注意Swift支持为方法參数取别名:在上面的代码里,numberOfTimes面向外部,times面向内部。



?的还有一种用途


使用可空值时,?能够出如今方法、属性或下标前面。假设?前的值为nil,那么?后面的表达式会被忽略,而原表达式直接返回nil,比如:



let optionalSquare: Square? = Square(sideLength: 2.5, name: "optional  
square")
let sideLength = optionalSquare?.sideLength


当optionalSquare为nil时,sideLength属性调用会被忽略。




枚举和结构




枚举


使用enum创建枚举——注意Swift的枚举能够关联方法:



enum Rank: Int { 
case Ace = 1
case Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten
case Jack, Queen, King
func simpleDescription() -> String {
switch self {
case .Ace:
return "ace"
case .Jack:
return "jack"
case .Queen:
return "queen"
case .King:
return "king"
default:
return String(self.toRaw())
}
}
}
let ace = Rank.Ace
let aceRawValue = ace.toRaw()


使用toRaw和fromRaw在原始(raw)数值和枚举值之间进行转换:


if let convertedRank = Rank.fromRaw(3) { 
let threeDescription = convertedRank.simpleDescription()
}


注意:枚举中的成员值(member value)是实际的值(actual value),和原始值(raw value)没有必定关联。



一些情况下枚举不存在有意义的原始值,这时能够直接忽略原始值:



enum Suit { 
case Spades, Hearts, Diamonds, Clubs
func simpleDescription() -> String {
switch self {
case .Spades:
return "spades"
case .Hearts:
return "hearts"
case .Diamonds:
return "diamonds"
case .Clubs:
return "clubs"
}
}
}
let hearts = Suit.Hearts
let heartsDescription = hearts.simpleDescription()


除了能够关联方法,枚举还支持在其成员上关联值,同一枚举的不同成员能够有不同的关联的值:


enum ServerResponse { 
case Result(String, String)
case Error(String)
}

let success = ServerResponse.Result("6:00 am", "8:09 pm")
let failure = ServerResponse.Error("Out of cheese.")

switch success {
case let .Result(sunrise, sunset):
let serverResponse = "Sunrise is at \(sunrise) and sunset is at \(sunset)."
case let .Error(error):
let serverResponse = "Failure... \(error)"
}


结构

Swift使用structkeyword创建结构。结构支持构造器和方法这些类的特性。结构和类的最大差别在于:结构的实例按值传递(passed by value),而类的实例按引用传递(passed by reference)。



struct Card { 
var rank: Rank
var suit: Suit
func simpleDescription() -> String {
return "The \(rank.simpleDescription()) of \(suit.simpleDescription())"
}
}
let threeOfSpades = Card(rank: .Three, suit: .Spades)
let threeOfSpadesDescription = threeOfSpades.simpleDescription()

 

协议(protocol)和扩展(extension)




协议


Swift使用protocol定义协议:



protocol ExampleProtocol { 
var simpleDescription: String { get }
mutating func adjust()
}


类型、枚举和结构都能够实现(adopt)协议:


class SimpleClass: ExampleProtocol { 
var simpleDescription: String = "A very simple class."
var anotherProperty: Int = 69105
func adjust() {
simpleDescription += " Now 100% adjusted."
}
}
var a = SimpleClass()
a.adjust()
let aDescription = a.simpleDescription

struct SimpleStructure: ExampleProtocol {
var simpleDescription: String = "A simple structure"
mutating func adjust() {
simpleDescription += " (adjusted)"
}
}
var b = SimpleStructure()
b.adjust()
let bDescription = b.simpleDescription


扩展

扩展用于在已有的类型上添加新的功能(比方新的方法或属性),Swift使用extension声明扩展:



extension Int: ExampleProtocol { 
var simpleDescription: String {
return "The number \(self)"
}
mutating func adjust() {
self += 42
}
}
7.simpleDescription


泛型(generics)

Swift使用<>来声明泛型函数或泛型类型:



func repeat(item: ItemType, times: Int) -> ItemType[] { 
var result = ItemType[]()
for i in 0..times {
result += item
}
return result
}
repeat("knock", 4)


Swift也支持在类、枚举和结构中使用泛型:


// Reimplement the Swift standard library's optional type 
enum OptionalValue {
case None
case Some(T)
}
var possibleInteger: OptionalValue = .None
possibleInteger = .Some(100)


有时须要对泛型做一些需求(requirements),比方需求某个泛型类型实现某个接口或继承自某个特定类型、两个泛型类型属于同一个类型等等,Swift通过where描写叙述这些需求:


func anyCommonElements <T, U where T: Sequence, U: Sequence, T.GeneratorType.Element: Equatable, T.GeneratorType.Element == U.GeneratorType.Element> (lhs: T, rhs: U) -> Bool { 
for lhsItem in lhs {
for rhsItem in rhs {
if lhsItem == rhsItem {
return true
}
}
}
return false
}
anyCommonElements([1, 2, 3], [3])